Light conveyor belts. Test method for the measurement of the electrostatic field generated by a running light conveyor belt

1999 ◽  
2016 ◽  
Author(s):  
Hanna Joos ◽  
Erica Madonna ◽  
Kasja Witlox ◽  
Sylvaine Ferrachat ◽  
Heini Wernli ◽  
...  

Abstract. While there is a clear impact of aerosol particles on the radiation balance, whether and how aerosol particles influence precipitation is controversial. Here we use the ECHAM6-HAM global cli- mate model coupled to an aerosol module to analyse whether an impact of anthropogenic aerosol particles on the timing and the amount of precipitation from warm conveyor belts in low pressure systems in the winter time North Pacific can be detected. We conclude that while polluted warm con- veyor belt trajectories start with 5–10 times higher black carbon concentrations, the overall amount of precipitation is comparable in pre-industrial and present-day conditions. Precipitation formation is however supressed in the most polluted warm conveyor belt trajectories.


2020 ◽  
Vol 5 (4) ◽  
pp. 111
Author(s):  
Yulia Resti ◽  
Firmansyah Burlian ◽  
Irsyadi Yani

The classification system in the sorting process in the can recycling industry can be made based on digital images by exploring the basic color pixel values ​​of images such as R, G, and B as variable inputs. In real time, the classification of cans in the sorting process occurs when cans placed on a conveyor belt move at a certain speed. This paper discusses the performance of can classification systems using the Naïve Bayes method. This method can handle all types of variables, including when all variables are continuous. Two types of conveyor belts are designed to get different speeds, and all images of the cans are captured on both conveyor belts. Two models of Bayes naive are built on the basis of the different distribution assumptions; the original model (all Gaussian distributed) and the model based on the best distribution. Performance of the classification system is built by dividing data into the learning data and the testing data with a composition of 50:50 in which each data is designed into 50 groups with different percentages on each type of cans using sampling technique without replacement. The results obtained are, first, the speed of the conveyor belt when capturing an image affects the pixel values of red, green, and blue and ultimately affects the results of the classification of cans. Second, not all input variables are Gaussian distributed. The classification system was built using assumption the best distribution model for each input variable has the better average accuracy level than the model that assumes all input variables are Gaussian distributed, and the accuracy level of classification on the first speeds of conveyor belt with a gear ratio of 12:30 and a diameter of 35 mm has an accuracy that is better than the other speed, both on the original model and the model based on the best distribution. However, it is necessary to test more statistical distribution models to obtain significant results.


2019 ◽  
Vol 18 (3) ◽  
pp. 223-232
Author(s):  
A. V. Glebov ◽  
G. D. Karmaev

Results of the analysis of scientific, technical and patent literature show that while having a great variety of constructive implementation of the proposed catchers there are no efficient and sufficiently reliable devices for catching conveyor belts at its reverse motion which are relatively simple in design. This is proved by practical activity of enterprises involved in extraction and processing of commercial minerals and other industries. A new design of a conveyor belt catcher that meets most requirements for the given equipment has been developed at the Institute of Mining, Ural of Branch of the Russian Academy of Sciences and then it has been tested under industrial conditions. The design makes provision for retention of the conveyor belt at its reverse motion beyond free edges from transported material. Catching devices are installed on both sides of the belt. Braking action of the belt at the reverse motion occurs due to its friction interaction with a catcher friction shoe located above the belt, and an eccentric mounted on the frame under the belt. A friction shoe is made with a concave curved surface facing the belt. The paper presents a calculation methodology of main parameters for the proposed design of catcher conveyor belts that permits to determine a force catching a conveyor belt down and for every braking period distance which has been passed by the belt, value of its compression, value of braking force, braking time and acceleration of belt motion, time and length of the distance passed by the belt to its full stop, parameters of a catcher and supporting structures, and other parameters. The paper also provides results of calculations for main design parameters of catching devices with an inclined conveyor having a belt width of 1400 mm for two catcher design versions: with location of an eccentric under the belt, and a brake shoe over the belt (option I) and with location of the eccentric over the conveyor belt, and the brake friction shoe under the belt (option II).


Sign in / Sign up

Export Citation Format

Share Document