Rubber, vulcanized or thermoplastic. Determination of tension set underconstant elongation, and of tension set, elongation and creep underconstant tensile load

2013 ◽  
Keyword(s):  
1963 ◽  
Vol 7 ◽  
pp. 182-194
Author(s):  
H. P. Materne

AbstractA series of four types of glasses was supplied for investigation. Six individual filaments of each glass (each filament ranged between 7 and 10 μ in diameter) were extracted and the ultimate tensile strength determined for each. The ultimate average tensile strength was then used in the determination of the tensile load applicable to the investigation.Two methods of examination were used—the Laue and a modified rotation camera. The results of the investigation seem to indicate that a reconstructive transformation in three of the four glasses studied was in process. These results have not been confirmed, due to time limitations. In the case of the E glass investigated, a series of rings were faintly produced after 15 days under 35% of the ultimate average tensile strength. These rings, actually egg-shaped ovals, appeared at 15, 20, and 30 mm from the point of contact of the incident beam. In the other modified E glass and in the YM-31A (BeO) glass, the egg-shaped configuration did not appear in the rotation camera, but did appear in the Laue examination as a semioriented series of spots.


2016 ◽  
Vol 368 ◽  
pp. 130-133 ◽  
Author(s):  
Martina Syrovátková ◽  
Petr Kulhavý ◽  
Pavel Srb ◽  
Michal Petrů

The global development of carbon composite materials has been devoting constantly in still more companies and research institutions. Pre-saturated fabrics known as prepregs have a significant position in this field. The common problem of many worldwide authors is how to determine their tensile strength. The problem with tensile load is mainly due to the extremely high strength of fibers filaments and structural fragility of the thin width of formed profiles. Therefore, indirect methods are usually used. They are based on a determination of the resonant frequencies or on a conversion of values obtained e.g. with bending test. In our case, some experiments have been based on the idea of added a non-composite material into the final structure. The aim of this work was also to find an appropriate modification of a surface of the additional element with regard to a mutual interaction, surface microstructure and mechanical properties of the resulting composite part.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 834 ◽  
Author(s):  
Mohammad Jafari ◽  
Mohammad Hossein Bayati Chaleshtari ◽  
Hamid Abdolalian ◽  
Eduard-Marius Craciun ◽  
Luciano Feo

In this study, the resultant forces and moments acting on infinite symmetric FGPs with a triangular hole subject to uniaxial tensile load were examined via an analytical method using the complex variable approach. The mechanical properties of graded plates are hypothesized to vary throughout the thickness exponentially. The impact of various factors, namely hole orientation, hole aspect ratio as well as the hole corner curve on stress distribution and moment resultants is considered. In order to approve the credibility of the analytical approach, its outcomes are compared to numerical results acquired from ABAQUS finite element modeling. This comparison showed a favorable agreement level among the acquired analytical and numerical outcomes. Based on these results, the mentioned factors entail a considerable effect on the distribution of resultant forces and moments at the proximity of the hole and the load bearing tolerance of functional grated plates with holes may be enhanced by suitable selection of the aforementioned parameters.


Author(s):  
Marcelo Paredes ◽  
Tomasz Wierzbicki

In this work the tensile capacity of circumferentially pressurized cracked pipes with varying crack parameters and pipe dimensions are numerically investigated. The biaxial loading mode includes internal pressure and tensile load, which are applied in sequence. The present physics-inspired fracture model based upon the original Mohr-Coulomb criterion enables not only the computation of global fracture response of pipe subjected to complex loading condition but also a thorough determination of the local evolving stress state around the growing cracks.


2016 ◽  
Vol 3 ◽  
pp. 60-64
Author(s):  
Kseniia Riabova ◽  
Luca Collini ◽  
Rinaldo Garziera

The work introduces a two-phase method for determination of axial loads in tie-rods. The method described here consists of an experimental activity and an automated numerical calculation. The influence of considering an elastic Winkler-type bed to model the tie-rod constraint inside the wall has been investigated. The algorithm used for calculation involves a solution of a functional minimization problem, where the tensile load and the stiffness of elastic foundation at the edges are used as optimization parameters and the error function, which describes the deviation between the frequencies measured and those calculated using finite element method, is minimized. Qualitative analysis of the results showed a significant reduction of the error compared to models with different boundary conditions. The method showed to be conservative for the strength evaluation of the rods, because the optimal values of tensile loads appeared to be higher than the load in perfect encastre conditions.


Sign in / Sign up

Export Citation Format

Share Document