Aerospace series. Tie Rod with integrated bolts. Assembly Code G, H and K

2017 ◽  
Keyword(s):  
2021 ◽  
Vol 18 (180) ◽  
pp. 20210334
Author(s):  
Liane Gabora ◽  
Mike Steel

Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change—e.g. cultural evolution, and earliest life—acquired traits are retained; these domains do not face the problem that Darwin’s theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self–other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.


Author(s):  
Andrea Flexeder ◽  
Michael Petter ◽  
Helmut Seidl

1995 ◽  
pp. 215-240
Author(s):  
R. J. Mitchell
Keyword(s):  

Author(s):  
Ian O. Angell ◽  
Brian J. Jones
Keyword(s):  

2007 ◽  
Vol 30 (4) ◽  
pp. 371-371
Author(s):  
Liane Gabora

AbstractThe argument that heritable epigenetic change plays a distinct role in evolution would be strengthened through recognition that it is what bootstrapped the origin and early evolution of life, and that, like behavioral and symbolic change, it is non-Darwinian. The mathematics of natural selection, a population-level process, is limited to replication with negligible individual-level change that uses a self-assembly code.


2019 ◽  
Vol 9 (19) ◽  
pp. 4086 ◽  
Author(s):  
Yongjun Lee ◽  
Hyun Kwon ◽  
Sang-Hoon Choi ◽  
Seung-Ho Lim ◽  
Sung Hoon Baek ◽  
...  

Potential software weakness, which can lead to exploitable security vulnerabilities, continues to pose a risk to computer systems. According to Common Vulnerability and Exposures, 14,714 vulnerabilities were reported in 2017, more than twice the number reported in 2016. Automated vulnerability detection was recommended to efficiently detect vulnerabilities. Among detection techniques, static binary analysis detects software weakness based on existing patterns. In addition, it is based on existing patterns or rules, making it difficult to add and patch new rules whenever an unknown vulnerability is encountered. To overcome this limitation, we propose a new method—Instruction2vec—an improved static binary analysis technique using machine. Our framework consists of two steps: (1) it models assembly code efficiently using Instruction2vec, based on Word2vec; and (2) it learns the features of software weakness code using the feature extraction of Text-CNN without creating patterns or rules and detects new software weakness. We compared the preprocessing performance of three frameworks—Instruction2vec, Word2vec, and Binary2img—to assess the efficiency of Instruction2vec. We used the Juliet Test Suite, particularly the part related to Common Weakness Enumeration(CWE)-121, for training and Securely Taking On New Executable Software of Uncertain Provenance (STONESOUP) for testing. Experimental results show that the proposed scheme can detect software vulnerabilities with an accuracy of 91% of the assembly code.


Sign in / Sign up

Export Citation Format

Share Document