scholarly journals An evolutionary process without variation and selection

2021 ◽  
Vol 18 (180) ◽  
pp. 20210334
Author(s):  
Liane Gabora ◽  
Mike Steel

Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change—e.g. cultural evolution, and earliest life—acquired traits are retained; these domains do not face the problem that Darwin’s theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self–other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.

2020 ◽  
Author(s):  
Liane Gabora ◽  
Mike Steel

AbstractA central tenet of evolutionary theory is that it requires variation upon which selection can act. We describe a means of attaining cumulative, adaptive, open-ended change that requires neither variation nor selective exclusion, and that can occur in the absence of generations (i.e., no explicit birth or death). This second evolutionary process occurs through the assimilation, restructuring, and extrusion of products into the environment by identical, interacting Reflexively Autocatalytic and Food set-generated (RAF) networks. We refer to this more primitive process evolutionary process as Self–Other Reorganisation because it involves internal self-organising and self-maintaining processes within entities, as well as interaction between entities. Since there is no self-assembly code, it is more haphazard than natural selection, and there is no discarding of acquired traits (a signature characteristic of natural selection). In the extreme, it can work with just one entity but it differs from learning because it can operate in groups of entities, and produce adaptive change across generations. We suggest that this more primitive process is operative during the initial stage of an evolutionary process, and that it is responsible for both the origin and early evolution of both organic life, and human culture. In cultural evolution, this ‘evolution without variation’ process can increase homogeneity amongst members of a group and thereby foster group identity and cohesion.


2007 ◽  
Vol 30 (4) ◽  
pp. 371-371
Author(s):  
Liane Gabora

AbstractThe argument that heritable epigenetic change plays a distinct role in evolution would be strengthened through recognition that it is what bootstrapped the origin and early evolution of life, and that, like behavioral and symbolic change, it is non-Darwinian. The mathematics of natural selection, a population-level process, is limited to replication with negligible individual-level change that uses a self-assembly code.


2011 ◽  
Vol 11 (1-2) ◽  
pp. 61-83 ◽  
Author(s):  
Liane Gabora

AbstractThis paper reviews and clarifies five misunderstandings about cultural evolution identified by Henrich et al. (2008). First, cultural representations are neither discrete nor continuous; they are distributed across neurons that respond to microfeatures. This enables associations to be made, and cultural change to be generated. Second, ‘replicator dynamics’ do not ensure natural selection. The replicator notion does not capture the distinction between actively interpreted self-assembly code and passively copied self-description, which leads to a fundamental principle of natural selection: inherited information is transmitted, whereas acquired information is not. Third, this principle is violated in culture by the ubiquity of acquired change. Moreover, biased transmission is less important to culture than the creative processes by which novelty is generated. Fourth, there is no objective basis for determining cultural fitness. Fifth, the necessity of randomness is discussed. It is concluded that natural selection inappropriate is an explanatory framework for culture.


2021 ◽  
Author(s):  
Beatriz Matarranz ◽  
Goutam Ghosh ◽  
Ramesh Kandanelli ◽  
Angel Sampedro ◽  
Kalathil K. Kartha ◽  
...  

We unravel the relationship between conjugation length and self-assembly behaviour of oligophenyleneethynylenes (OPEs).


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Carmeli ◽  
Zoltán Kutalik ◽  
Pashupati P. Mishra ◽  
Eleonora Porcu ◽  
Cyrille Delpierre ◽  
...  

AbstractIndividuals experiencing socioeconomic disadvantage in childhood have a higher rate of inflammation-related diseases decades later. Little is known about the mechanisms linking early life experiences to the functioning of the immune system in adulthood. To address this, we explore the relationship across social-to-biological layers of early life social exposures on levels of adulthood inflammation and the mediating role of gene regulatory mechanisms, epigenetic and transcriptomic profiling from blood, in 2,329 individuals from two European cohort studies. Consistently across both studies, we find transcriptional activity explains a substantive proportion (78% and 26%) of the estimated effect of early life disadvantaged social exposures on levels of adulthood inflammation. Furthermore, we show that mechanisms other than cis DNA methylation may regulate those transcriptional fingerprints. These results further our understanding of social-to-biological transitions by pinpointing the role of gene regulation that cannot fully be explained by differential cis DNA methylation.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


1977 ◽  
Vol 9 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Thomas L. Sporleder ◽  
Robert A. Skinner

Several definitions of diversification exist. Typically, the concept is dynamic and refers to the relationship among various activities or enterprises in which the firm is engaged. As new activities are acquired by a firm from some existing base of activities, complementarity of the newly acquired activity relative to the existing base is subjectively determined. Judgment is rendered on whether the result represents diversification or conglomeration.Conventional wisdom has not succinctly differentiated between diversification and conglomeration. Some writers have considered conglomeration a special case of diversification [2, 7]. For purposes of this paper, this taxonomic argument need not be settled.


2015 ◽  
Vol 15 (3-4) ◽  
pp. 235-253 ◽  
Author(s):  
Taylor Davis

In the scientific literature on religious evolution, two competing theories appeal to group selection to explain the relationship between religious belief and altruism, or costly, prosocial behavior. Both theories agree that group selection plays an important role in cultural evolution, affecting psychological traits that individuals acquire through social learning. They disagree, however, about whether group selection has also played a role in genetic evolution, affecting traits that are inherited genetically. Recently, Jonathan Haidt has defended the most fully developed account based on genetic group selection, and I argue here that problems with this account reveal good reasons to doubt that genetic group selection has played any important role in human evolution at all. Thus, considering the role of group selection in religious evolution is important not just because of what it reveals about religious psychology and religious evolution, but also because of what it reveals about the role of group selection in human evolution more generally.


Sign in / Sign up

Export Citation Format

Share Document