Varistors for use in electronic equipment

2022 ◽  
Keyword(s):  
2010 ◽  
Vol E93-B (7) ◽  
pp. 1788-1796 ◽  
Author(s):  
Takanori UNO ◽  
Kouji ICHIKAWA ◽  
Yuichi MABUCHI ◽  
Atsushi NAKAMURA ◽  
Yuji OKAZAKI ◽  
...  

2007 ◽  
Vol 38 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
Andrei G. Kulakov ◽  
L. L. Vasiliev, Jr ◽  
Mikhail I. Rabetskii ◽  
A. A. Antukh

Author(s):  
J. P. Lejannou ◽  
M. Cadre ◽  
A. Latrobe ◽  
A. Viault

2011 ◽  
Vol 70 (8) ◽  
pp. 731-734 ◽  
Author(s):  
N. D. Koshevoy ◽  
E. M. Kostenko ◽  
V. A. Gordienko ◽  
V. P. Syroklyn
Keyword(s):  

2017 ◽  
Vol 16 (8) ◽  
pp. 1807-1817 ◽  
Author(s):  
Fabiana Tornese ◽  
Maria Grazia Gnoni ◽  
Giorgio Mossa ◽  
Giovanni Mummolo ◽  
Rossella Verriello

Author(s):  
Chris Muller ◽  
Chuck Arent ◽  
Henry Yu

Abstract Lead-free manufacturing regulations, reduction in circuit board feature sizes and the miniaturization of components to improve hardware performance have combined to make data center IT equipment more prone to attack by corrosive contaminants. Manufacturers are under pressure to control contamination in the data center environment and maintaining acceptable limits is now critical to the continued reliable operation of datacom and IT equipment. This paper will discuss ongoing reliability issues with electronic equipment in data centers and will present updates on ongoing contamination concerns, standards activities, and case studies from several different locations illustrating the successful application of contamination assessment, control, and monitoring programs to eliminate electronic equipment failures.


Author(s):  
Marie-Pascale Chagny ◽  
John A. Naoum

Abstract Over the years, failures induced by an electrostatic discharge (ESD) have become a major concern for semiconductor manufacturers and electronic equipment makers. The ESD events that cause destructive failures have been studied extensively [1, 2]. However, not all ESD events cause permanent damage. Some events lead to recoverable failures that disrupt system functionality only temporarily (e.g. reboot, lockup, and loss of data). These recoverable failures are not as well understood as the ones causing permanent damage and tend to be ignored in the ESD literature [3, 4]. This paper analyzes and characterizes how these recoverable failures affect computer systems. An experimental methodology is developed to characterize the sensitivity of motherboards to ESD by simulating the systemlevel ESD events induced by computer users. The manuscript presents a case study where this methodology was used to evaluate the robustness of desktop computers to ESD. The method helped isolate several weak nets contributing to the failures and identified a design improvement. The result was that the robustness of the systems improved by a factor of 2.


Sign in / Sign up

Export Citation Format

Share Document