scholarly journals THE CONCENTRATION OF THERMAL STRESSES IN METAL MATERIALS AND CONSTRUCTION UNDER LOCAL HEATING

Author(s):  
V. Deryushev ◽  
M. Zayceva ◽  
D. Evseev ◽  
E. Kosenko

significant thermal stresses arising in thin-walled metal materials and structures loaded with tensile stresses can lead either to their complete destruction or to the appearance of discontinuity zones in them. The equations for calculation of temperature stresses in flat thin-walled structures at their localized thermal heating caused by the action of concentrated energy flows are analyzed. As an example, a thin-walled stretched plate subjected to strong local heating in a circular spot is considered. The developed model takes into account the change of elastic characteristics under strong local heating and the change in the thickness of the material in the heating spot. As an example, the diagram of the distribution of tangential stresses for a stretched plate in the area of a circular heating spot is given. Thus, the results of the study show that there is a rupture and concentration of stresses along the contour of the heating spot from the cold zone.

2019 ◽  
Vol 974 ◽  
pp. 729-734
Author(s):  
Victor V. Deryushev ◽  
Marina M. Zaitseva ◽  
Dmitriy Z. Evseev ◽  
Elena E. Kosenko

Considerable thermal stresses arising in thin-walled metallic materials and structures loaded with tensile stresses can lead either to their complete destruction or to the appearance of discontinuity zones in them.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 686
Author(s):  
Xufei Lu ◽  
Michele Chiumenti ◽  
Miguel Cervera ◽  
Hua Tan ◽  
Xin Lin ◽  
...  

Thin-walled structures are of great interest because of their use as lightweight components in aeronautical and aerospace engineering. The fabrication of these components by additive manufacturing (AM) often produces undesired warpage because of the thermal stresses induced by the manufacturing process and the components’ reduced structural stiffness. The objective of this study is to analyze the distortion of several thin-walled components fabricated by Laser Powder Bed Fusion (LPBF). Experiments are performed to investigate the sensitivity of the warpage of thin-walled structures fabricated by LPBF to different design parameters such as the wall thickness and the component height in several open and closed shapes. A 3D-scanner is used to measure the residual distortions in terms of the out-of-plane displacement. Moreover, an in-house finite element software is firstly calibrated and then used to enhance the original design in order to minimize the warpage induced by the LPBF printing process. The outcome of this shows that open geometries are more prone to warping than closed ones, as well as how vertical stiffeners can mitigate component warpage by increasing stiffness.


2018 ◽  
Vol 762 (8) ◽  
pp. 36-39 ◽  
Author(s):  
B.G. BULATOV ◽  
◽  
R.I. SHIGAPOV ◽  
M.A. IVLEV ◽  
I.V. NEDOSEKO ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Sign in / Sign up

Export Citation Format

Share Document