Les îlots de chaleur urbains dans l'agglomération annecienne (Haute-Savoie) / Urban heat islands in the urban area of Annecy

1997 ◽  
Vol 72 (4) ◽  
pp. 299-303
Author(s):  
David Guimard
Author(s):  
Chaobin Yang ◽  
Ranghu Wang ◽  
Shuwen Zhang ◽  
Caoxiang Ji ◽  
Xie Fu

Temporal variation of urban heat island (UHI) intensity is one of the most important themes in UHI studies. However, fine-scale temporal variability of UHI with explicit spatial information is sparse in the literature. Based on the hourly air temperature from 195 meteorological stations during August 2015 in Changchun, China, hourly spatiotemporal patterns of UHI were mapped to explore the temporal variability and the effects of land use on the thermal environment using time series analysis, air temperature profiling, and spatial analysis. The results showed that: (1) high air temperature does not indicate strong UHI intensity. The nighttime UHI intensity (1.51 °C) was much stronger than that in the daytime (0.49 °C). (2) The urban area was the hottest during most of the day except the period from late morning to around 13:00 when there was about a 40% possibility for an “inverse UHI intensity” to appear. Paddy land was the coolest in the daytime, while woodland had the lowest temperature during the nighttime. (3) The rural area had higher warming and cooling rates than the urban area after sunrise and sunset. It appeared that 23 °C was the threshold at which the thermal characteristics of different land use types changed significantly.


2019 ◽  
Vol 11 (10) ◽  
pp. 1212 ◽  
Author(s):  
Xiaojun Wu ◽  
Guangxing Wang ◽  
Rui Yao ◽  
Lunche Wang ◽  
Deqing Yu ◽  
...  

Surface urban heat islands (SUHIs) have been investigated in many regions around the world, but little attention has been given with regard to SUHIs in South America. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data was used to investigate the diurnal, seasonal, and interannual variations in the SUHI intensity (SUHII, the urban LST minus the rural LST) in 44 South American cities in different climate zones and types of rural land. To examine the effects of factors that may influence the SUHII, correlations between the SUHII and the enhanced vegetation index (EVI), urban area, population, altitude, and anthropogenic heat emissions were performed. The results showed that the SUHI effect was obvious in South America. The mean daytime SUHII was higher than the mean night-time SUHII in all areas except for the arid climate zone. In the daytime, the summer displayed a stronger SUHII in the warm temperate climate zone than the other seasons. The night-time SUHII showed less obvious seasonal variations. In addition, the surrounding land cover influenced the SUHII. During the day, the SUHII was therefore stronger in rural areas that were covered by forests than in other types of rural land. Interannually, most cities showed an insignificant temporal trend in the SUHII from 2003 to 2016. The daytime SUHII was significantly and negatively correlated with the ∆EVI (the urban EVI minus the rural EVI) across the 44 cities, but a poor relationship was observed at night. In addition, anthropogenic heat emissions were positively correlated with the night-time SUHII. Urban area, population, and altitude were weakly correlated with the SUHII, which suggested that these factors may not have a significant impact on the spatial variations in the SUHII in South America.


Author(s):  
Yuri Matheus Neves Silva ◽  
Helder Martins Silva ◽  
Raiany Dias De Andrade Silva ◽  
Eduardo Duarte Marques ◽  
Olga Venimar De Oliveira Gomes

The phenomenon of urban heat islands (UHI) is caused by the increase in temperatures of an urban area as a result of the development of human activities within that area, this phenomenon is usually studied in medium and large cities. This study aims to verify if the phenomenon of UHI occurs in the municipality of Três Rios – RJ, a small sized city. This study included the use of mobile transect, through pre-established data collection points/stations. Five data collection points were selected, from which one was included in a rural area, one in the Parque Natural Municipal (Urban Park, within the city), and three points within the urbanized area. The equipment used was the Brunton® / ADC PRO handheld weather station. The data collection period ranged from September 2018 until July 2019, which included the four seasons. Measurements were taken at 6:00, 12:00, 15:00, 18:00, and 21:00h, in alternate days during the study period. Considering the temperature measurements, two different indicators of thermal variability were used. Strong magnitude heat islands were detected, taking into consideration the relevant variation of maximum temperatures observed in the urban area when compared to the rural area. The results indicate the most affected populations to be the ones located within urban areas, mostly individuals under socioeconomic vulnerability. The results obtained can be used as support for the development of strategies to minimize the thermal discomfort to populations exposed to the influence of higher magnitude urban heat islands.


2021 ◽  
Vol 70 ◽  
pp. 1-14
Author(s):  
Mohamed Anis Fekih ◽  
Walid Bechkit ◽  
Herve Rivano ◽  
Manoel Dahan ◽  
Florent Renard ◽  
...  

2021 ◽  
pp. 111051
Author(s):  
M.E. Gonzalez-Trevizo ◽  
K.E. Martinez-Torres ◽  
J.F. Armendariz-Lopez ◽  
M. Santamouris ◽  
G. Bojorquez-Morales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document