Paleo-Urban Development and Late Quaternary Environmental Change in the Akko Area

Paléorient ◽  
1983 ◽  
Vol 9 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Moshe Inbar ◽  
Dorit Sivan
2018 ◽  
Author(s):  
Michael M. McGlue ◽  
◽  
Valdir Felipe Novello ◽  
Francisco W. Cruz ◽  
Rudney de Almeida Santos ◽  
...  

Author(s):  
M.S. Humphries

Abstract Sediments are the most important source of Late Quaternary palaeoclimate information in southern Africa, but have been little studied from a geochemical perspective. However, recent advances in analytical techniques that allow rapid and near-continuous elemental records to be obtained from sedimentary sequences has resulted in the increasing use of elemental indicators for reconstructing climate. This paper explores the diverse information that can be acquired from the inorganic component of sediments and reviews some of the progress that has been made over the last two decades in interpreting the climatic history of southern Africa using elemental records. Despite the general scarcity of elemental records, excellent examples from the region exist, which provide some of the longest and most highly resolved sequences of environmental change currently available. Records from Tswaing crater and marine deposits on the southern KwaZulu-Natal coastline have provided rare glimpses into hydroclimate variability over the last 200 000 years, suggesting that summer rainfall in the region responded predominantly to insolation forcing on glacial-interglacial timescales. Over shorter timescales, lakes and wetlands found in the Wilderness embayment on the southern Cape coast and along the Maputaland coast in north-eastern South Africa have yielded highly-resolved elemental records of Holocene environmental change, providing insight into the changing interactions between tropical (e.g., El Niño-Southern Oscillation) and temperate (e.g., mid-latitude westerlies) climate systems affecting rainfall variability in the region. The examples discussed demonstrate the multiple environmental processes that can be inferred from elemental proxies and the unique insight this can provide in advancing our understanding of past climate change on different timescales. The interpretation of geochemical data can be complicated by the complex nature of sedimentary environments, various proxy assumptions and analytical challenges, and the reliability of sediment-based climate reconstructions is substantially enhanced through multi-proxy approaches.


2020 ◽  
Vol 55 (10) ◽  
pp. 7041-7056 ◽  
Author(s):  
Archana Das ◽  
Jaquilin Joseph ◽  
Tarun Solanki ◽  
Nisarg Makwana ◽  
Gaurav Chauhan ◽  
...  

2020 ◽  
Author(s):  
Shuang Zhang ◽  
Christina Manning ◽  
Christopher Satow ◽  
Simon J Armitage ◽  
Simon Blockley

<p>The Eastern Mediterranean is an important region for understanding the late Quaternary, as there is evidence for a complex pattern of climatic and environmental change, influenced by orbital forcing and complex feedback mechanisms (Rohling et al., 2013). It is also a key region for examining the dispersal of humans out of Africa. Consequently, it is important to develop robust chronologies for palaeoclimatic, environmental and archaeological records in the region, to allow synchronisation, comparison and hypothesis testing. Tephrochronology is a vital tool for correlating such records, but the fine detail of the Eastern Mediterranean tephra depositional history is not yet well defined. Part of the problem relates to a lack of cryptotephra (non-visible ash) studies on long stratigraphic records. It is well known from the Atlantic and Central Mediterranean that cryptotephra studies can significantly improve tephra inventories, and constrain the relationship between key tephra markers and important environmental transitions. Another key problem for the region is that for distal tephra there is a relatively limited geochemical database from different volcanic centres, especially in terms of trace element compositions. One important method for addressing this problem is to develop detailed tephrostratigraphic records and tephra geochemical inventories from long sediment sequences (e.g. Bourne et al., 2010; Satow et al., 2015).</p><p>Here we present the first marine crypto-tephrostratigraphy from the Levantine Sea, covering approximately the last ~200,000 years, from a long marine core (MD81-LC31). The new data for the core include tephra shard concentrations, major and trace element geochemistry, correlations to the eruptive record of the Aegean and Anatolian volcanic centres, and new radiometric age information. Our new data is compared to existing chronological information from LC-31, including sedimentological, geochemical, paleomagnetic and radiocarbon evidence. Our data helps to refine the chronology for this important record and will underpin ongoing studies into the detail of palaeoceanographic and environmental change in the region.</p><p> </p><p>Bourne, A.J., Lowe, J.J., Trincardi, F. et al. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews, 29(23-24), 3079-3094.</p><p>Rohling, E.J., Grant, K.M., Roberts, A.P. et al. 2013. Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: implications for hominin migrations. Current Anthropology, 54(S8), S183-S201.</p><p>Satow, C., Tomlinson, E.L., Grant, K.M. et al. 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews, 117, 96-112.</p>


Sign in / Sign up

Export Citation Format

Share Document