climatic and environmental change
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
pp. 217-234
Author(s):  
Elhoucine Essefi ◽  
Soumaya Hajji

This chapter aimed to investigate the record of climatic and environmental change in the sedimentary filling of sebkha Mhabeul and their effect on hydric and eolian erosion within the wetland and its watershed. Along a 37 cm core, the sedimentary, geochemical, and geophysical signals at the Holocene-Anthropocene transition were followed. Sampling was carried out each 1 cm to obtain 37 samples. All studied parameters and clustering techniques indicate that the first 7 cm represent the Anthropocene strata. According to the age model, this upper part of the core records the last 300 yrs. The sedimentary record of the Anthropocene is marked by an increasing rate of sedimentation, grain size fining, heavy metals (Pb, Cu, Ni, Mn, and Fe) enrichment, which is related to increased erosion. Other intrinsic parameters such as CE, pH, Na, K, and CaCO3 enhance sediment erodibility. The measurement of the magnetic susceptibility along a 37 cm core collected from the sebkha Mhabeul shows an obvious upward increase related to a high content of heavy metals for the first 7 cm.


2021 ◽  
Vol 3 ◽  
Author(s):  
P. J. Depetris

River discharge time series, originally recorded to anticipate floods and water scarcity, later became indispensable to design hydroelectric dams. Presently, discharge monitoring aids in detecting climatic and environmental change, because the discharge and quality of river water are functions of many climatic, biological, geological, and topographic variables coexisting in the basin. Climate change is altering the atmospheric precipitation distribution pattern-both, in time and space-as well as the occurrence of extreme climatic events. It is important the global upgrading of river gauging networks to unveil hydrological trends and changing atmospheric patterns. In so doing, discharge monitoring stations–and the resulting time series-may be, as well, invaluable in revealing the role played by significant environmental variables.


2021 ◽  
Vol 17 (5) ◽  
pp. 1903-1918
Author(s):  
Franziska A. Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

Abstract. The temperate region of western Europe underwent significant climatic and environmental change during the last deglaciation. Much of what is known about the terrestrial ecosystem response to deglacial warming stems from pollen preserved in sediment sequences, providing information on vegetation composition. Other ecosystem processes, such as soil respiration, remain poorly constrained over past climatic transitions but are critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Here we show that speleothem carbon isotope (δ13Cspel) records may retain information on soil respiration and allow its reconstruction over time. While this notion has been proposed in the past, our study is the first to rigorously test it, using a combination of multi-proxy geochemical analysis (δ13C, Ca isotopes, and radiocarbon) on three speleothems from the NW Iberian Peninsula and quantitative forward modelling of processes in soil, karst, and cave. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (using the radiocarbon reservoir effect) from the δ13Cspel signal to derive changes in respired δ13C. The coupling of soil gas pCO2 and δ13C via a mixing line describing diffusive gas transport between an atmospheric and a respired end-member allows the modelling of changes in soil respiration in response to temperature. Using this coupling and a range of other parameters describing carbonate dissolution and cave atmospheric conditions, we generate large simulation ensembles from which the results most closely matching the measured speleothem data are selected. Our results robustly show that an increase in soil gas pCO2 (and thus respiration) is needed to explain the observed deglacial trend in δ13Cspel. However, the Q10 (temperature sensitivity) derived from the model results is higher than current measurements, suggesting that part of the signal may be related to a change in the composition of the soil respired δ13C, likely from changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.


Author(s):  
Celia McMichael ◽  
Teresia Powell

In Fiji, low-lying coastal villages are beginning to retreat and relocate in response to coastal erosion, flooding and saltwater intrusion. Planned relocation is considered a last resort as a form of adaptation to the impacts of climatic and environmental change. The health impacts of planned relocation are poorly understood. This paper draws on data from multi-year research with residents of the iTaukei (Indigenous) Fijian village of Vunidogoloa. We used qualitative research methods to examine experiences of planned relocation, including residents’ accounts of their health and quality of life. In-depth interviews and group discussions were conducted with villagers living in a site of relocation, at four points in time (2015, 2016, 2019, and 2020). Twenty-seven people in Vunidogoloa, Fiji, participated in in-depth interviews, several on more than one occasion. Six group discussions with between eight to twelve participants were also conducted. Qualitative analytic software (NVivo) was used to analyse interview transcripts and identify themes. Villagers report both health benefits and challenges following planned relocation. Key facilitators for good health include movement away from some environmental risks to health, adequate drinking water and sanitation, food security including through farms and kitchen gardens, livelihood opportunities, improved access to schools and health services, and appropriate housing design. However, residents also refer to unanticipated risks to health including increased consumption of packaged goods and alcohol, disruptions to social structures and traditional values, and disrupted place attachment following movement away from a coastal site of belonging with consequences for mental wellbeing. Therefore, planned relocation has altered the social determinants of health in complex ways, bringing both health opportunities and risks. These results highlight the need for context-specific planning and adaptation programs that include meaningful involvement of community members in ongoing decision making, and call for an understanding of diverse social determinants of health that emerge and evolve in contexts of planned relocation.


2021 ◽  
Author(s):  
Franziska A. Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

Abstract. The temperate region of Western Europe underwent dramatic climatic and environmental change during the last deglaciation. Much of what is known about the terrestrial ecosystem response to deglacial warming stems from pollen preserved in sediment sequences, providing information on vegetation composition. Other ecosystem processes, such as soil respiration, remain poorly constrained over past climatic transitions, but are critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Here we show that speleothem carbon isotope (δ13Cspel) records may retain information on local soil respiration, and allow its reconstruction over time. While this notion has been proposed in the past, our study is the first to rigorously test it, using a combination of multi-proxy geochemical analysis (δ13C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (using the radiocarbon reservoir effect) from the δ13Cspel signal to derive changes in respired δ13C. Coupling of soil gas pCO2 and δ13C via a mixing line describing diffusive gas transport between an atmospheric and a respired end member allows modelling of changes in soil respiration in response to temperature. Using this coupling and a range of other parameters describing carbonate dissolution and cave atmospheric conditions, we generate large simulation ensembles from which the results most closely matching the measured speleothem data are selected. Our results robustly show that an increase in soil pCO2 (and thus respiration) is needed to explain the observed deglacial trend in δ13Cspel. However, the Q10 (temperature sensitivity) derived from the model results is higher than current measurements, suggesting that part of the signal may be related to a change in the composition of the soil respired δ13C, likely from changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.


2019 ◽  
Vol 31 (4) ◽  
pp. 896-913
Author(s):  
Patrick J. Klinger

This research note explores the interactions between environmental change and cultural response in a case study focused on the diminution of the northern Scottish North Sea herring fishing industry from c. 1660 to 1707 and its role in the Anglo-Scottish Union of 1707. Through an interdisciplinary approach utilizing archival sources of fishing data and proxy sources, this study traces these additional causes of the decline in the Scottish herring industry in northern Scotland and argues that the herring decline was also driven by climatic and environmental change. In addition, it explores where the herring went and why, and demonstrates how a decline of the herring industry affected people in fishing communities in northern Scotland and created groups that supported union between Scotland and England.


Author(s):  
Lindsay P. Galway ◽  
Thomas Beery ◽  
Kelsey Jones-Casey ◽  
Kirsti Tasala

Solastalgia is a relatively new concept for understanding the links between human and ecosystem health, specifically, the cumulative impacts of climatic and environmental change on mental, emotional, and spiritual health. Given the speed and scale of climate change alongside biodiversity loss, pollution, deforestation, unbridled resource extraction, and other environmental challenges, more and more people will experience solastalgia. This study reviewed 15 years of scholarly literature on solastalgia using a scoping review process. Our goal was to advance conceptual clarity, synthesize the literature, and identify priorities for future research. Four specific questions guided the review process: (1) How is solastalgia conceptualized and applied in the literature?; (2) How is solastalgia experienced and measured in the literature?; (3) How is ‘place’ understood in the solastalgia literature?; and (4) Does the current body of literature on solastalgia engage with Indigenous worldviews and experiences? Overall, we find there is a need for additional research employing diverse methodologies, across a greater diversity of people and places, and conducted in collaboration with affected populations and potential knowledge, alongside greater attention to the practical implications and applications of solastalgia research. We also call for continued efforts to advance conceptual clarity and theoretical foundations. Key outcomes of this study include our use of the landscape construct in relation to solastalgia and a call to better understand Indigenous peoples’ lived experiences of landscape transformation and degradation in the context of historical traumas.


Sign in / Sign up

Export Citation Format

Share Document