INCRETIN AND DIABETES

2011 ◽  
pp. 5-10
Author(s):  
Huu Dang Tran

The incretins are peptide hormones secreted from the gut in response to food. They increase the secretion of insulin. The incretin response is reduced in patients with type 2 diabetes so drugs acting on incretins may improve glycaemic control. Incretins are metabolised by dipeptidyl peptidase, so selectively inhibiting this enzyme increases the concentration of circulating incretins. A similar effect results from giving an incretin analogue that cannot be cleaved by dipeptidyl peptidase. Studies have identified other actions including improvement in pancreatic β cell glucose sensitivity and, in animal studies, promotion of pancreatic β cell proliferation and reduction in β cell apoptosis.

2015 ◽  
Vol 8 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Hideaki Kaneto ◽  
Taka-aki Matsuoka ◽  
Tomohiko Kimura ◽  
Atsushi Obata ◽  
Masashi Shimoda ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 278-288 ◽  
Author(s):  
Amelia K. Linnemann ◽  
Mieke Baan ◽  
Dawn Belt Davis

Abstract Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study.


2016 ◽  
Vol 175 (4) ◽  
pp. 345-352 ◽  
Author(s):  
Daniël H van Raalte ◽  
Mathijs C Bunck ◽  
Mark M Smits ◽  
T Hoekstra ◽  
Anja Cornér ◽  
...  

Objective Glucagon-like peptide (GLP)-1 receptor agonist treatment improves β-cell function. In this study, we investigated whether the improvements are sustained during a 3-year treatment period. Research design and methods Sixty-nine metformin-treated type 2 diabetes patients were randomised to the GLP1 receptor agonist, exenatide (EXE) twice daily (BID) or to insulin glargine (GLAR). β-cell function parameters were derived using the Mari model from standardised breakfast and lunch meals that were administered before treatment, and after 1 and 3 years of treatment. EXE was administered before breakfast. Results Fifty-nine (EXE: n = 30; GLAR: n = 29) and thirty-six (EXE: n = 16; GLAR: n = 20) patients completed the meal at 1- and 3-year treatment respectively. After 3 years, groups had comparable glycaemic control (HbA1c: EXE 6.6 ± 0.2% and GLAR 6.9 ± 0.2%; P = 0.216). Compared with GLAR, at 1 and 3 years, EXE induced a stronger reduction in post-breakfast glucose concentrations (P < 0.001), with lower C-peptide levels (P < 0.001). Compared with GLAR, EXE increased insulin secretion at 8 mmol/L glucose throughout the study period (P < 0.01). Both treatments improved β-cell glucose sensitivity after 1-year treatment. However, only EXE treatment sustained this improvement for 3 years. No consistent changes in other β-cell parameters including rate sensitivity and potentiation were observed. Conclusions Compared with GLAR, EXE improved the parameters of β-cell function, especially insulin secretion at 8 mmol/L glucose and β-cell glucose sensitivity, which was sustained during the 3-year treatment period.


2018 ◽  
Vol 103 (4) ◽  
pp. 1402-1407 ◽  
Author(s):  
Hussein Al Jobori ◽  
Giuseppe Daniele ◽  
John Adams ◽  
Eugenio Cersosimo ◽  
Carolina Solis-Herrera ◽  
...  

Abstract Objective To examine whether lowering plasma glucose concentration with the sodium-glucose transporter-2 inhibitor empagliflozin improves β-cell function in patients with type 2 diabetes mellitus (T2DM). Methods Patients with T2DM (N = 15) received empagliflozin (25 mg/d) for 2 weeks. β-Cell function was measured with a nine-step hyperglycemic clamp (each step, 40 mg/dL) before and at 48 hours and at 14 days after initiating empagliflozin. Results Glucosuria was recorded on days 1 and 14 [mean ± standard error of the mean (SEM), 101 ± 10 g and 117 ± 11 g, respectively] after initiating empagliflozin, as were reductions in fasting plasma glucose levels (25 ± 6 mg/dL and 38 ± 8 mg/dL, respectively; both P &lt; 0.05). After initiating empagliflozin and during the stepped hyperglycemic clamp, the incremental area under the plasma C-peptide concentration curve increased by 48% ± 12% at 48 hours and 61% ± 10% at 14 days (both P &lt; 0.01); glucose infusion rate increased by 15% on day 3 and 16% on day 14, compared with baseline (both P &lt; 0.05); and β-cell function, measured with the insulin secretion/insulin resistance index, increased by 73% ± 21% at 48 hours and 112% ± 20% at 14 days (both P &lt; 0.01). β-cell glucose sensitivity during the hyperglycemic clamp was enhanced by 42% at 14 hours and 54% at 14 days after initiating empagliflozin (both P &lt; 0.01). Conclusion Lowering the plasma glucose concentration with empagliflozin in patients with T2DM augmented β-cell glucose sensitivity and improved β-cell function.


Sign in / Sign up

Export Citation Format

Share Document