Advances in Nutrition
Latest Publications


TOTAL DOCUMENTS

1358
(FIVE YEARS 552)

H-INDEX

89
(FIVE YEARS 19)

Published By Oxford University Press

2156-5376, 2161-8313

Author(s):  
Caroline E Childs ◽  
Daniel Munblit ◽  
Laurien Ulfman ◽  
Carlos Gómez-Gallego ◽  
Liisa Lehtoranta ◽  
...  

Abstract Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for food allergy include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers which predict the risk of developing food allergy in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy and synthesizes the currently available data indicating potential biomarkers. While there is a large body of research evidence available within each field of potential risk factors, there are very limited number of studies which span multiple methodological fields, for example including immunology, microbiome, genetic/epigenetic factors and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge confirmed food allergy in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high quality, reliable and reproducible research findings. Statement of significance Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. Identifying reliable biomarkers which predict the risk of developing food allergy would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. This review provides details on the genetic, epigenetic, dietary and microbiome influences upon the development of food allergy. This helps in identifying reliable biomarkers to predict the risk of developing food allergy, which could be valuable in both preventing morbidity and mortality and by making interventions available at the earliest opportunity.


2021 ◽  
Vol 12 (Supplement_1) ◽  
pp. 1S-13S
Author(s):  
Julie M Hess ◽  
Charles B Stephensen ◽  
Mario Kratz ◽  
Bradley W Bolling

ABSTRACT Systemic chronic inflammation may be a contributing factor to many noncommunicable diseases, including diabetes, cardiovascular disease, and obesity. With the rapid rise of these conditions, identifying the causes of and treatment for chronic inflammation is an important research priority, especially with regard to modifiable lifestyle factors such as diet. An emerging body of evidence indicates that consuming certain foods, including dairy foods like milk, cheese, and yogurt, may be linked to a decreased risk for inflammation. To discuss both broader research on diet and inflammation as well as research on links between individual foods and inflammation, the National Dairy Council sponsored a satellite session entitled “Exploring the Links between Diet and Inflammation: Dairy Foods as Case Studies” at the American Society for Nutrition's 2020 LIVE ONLINE Conference. This article, a review based on the topics discussed during that session, explores the links between diet and inflammation, focusing most closely on the relations between intake of dairy fat and dairy foods like milk, cheese, and yogurt, and biomarkers of inflammation from clinical trials. While there is currently insufficient evidence to prove an “anti-inflammatory” effect of dairy foods, the substantial body of clinical research discussed in this review indicates that dairy foods do not increase concentrations of biomarkers of chronic systemic inflammation.


Author(s):  
Riley L Hughes ◽  
David A Alvarado ◽  
Kelly S Swanson ◽  
Hannah D Holscher

Abstract Inulin-type fructans (ITF), including short-chain fructooligosaccharides (scFOS), oligofructose, and inulin, are commonly used fibers that are widely regarded as prebiotic for their ability to be selectively utilized by the intestinal microbiota to confer a health benefit. However, the literature thus far lacks a thorough discussion of the evidence from human clinical trials for the prebiotic effect of ITF, including both effects on the intestinal microbiota composition as well as the intestinal and extraintestinal (e.g., glucose homeostasis, lipids, mineral absorption and bone health, appetite and satiety, inflammation and immune function, and body composition) benefits. Additionally, there is a lack of discussion regarding aspects such as the effect of ITF chain length on its intestinal and extraintestinal effects. The overall objective of this systematic review was to summarize the prebiotic potential of ITF based on the results of human clinical trials in healthy adult populations. Evidence from studies included in the current review suggest that ITF have a prebiotic effect on the intestinal microbiota, promoting the abundances of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii. Beneficial health effects reported following ITF intake include improved intestinal barrier function, improved laxation, increased insulin sensitivity, decreased triglycerides and an improved lipid profile, increased absorption of calcium and magnesium, and increased satiety. While there is some evidence for differing effects of ITF based on chain length, lack of direct comparisons and detailed descriptions of physicochemical properties limit the ability to draw conclusions from human clinical studies. Future research should focus on elucidating the mechanisms by which the intestinal microbiota mediates or modifies the effects of ITF on human health and the contribution of individual factors such as age and metabolic health to move towards personalization of prebiotic application.


Author(s):  
Chenyu Jiang ◽  
Ling-Zhi Cheong ◽  
Xue Zhang ◽  
Abdelmoneim H Ali ◽  
Qingzhe Jin ◽  
...  

Abstract Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources, and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However, there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood. Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term functions on infants and children are required.


Sign in / Sign up

Export Citation Format

Share Document