scholarly journals Thermal stable and proteinase-K resistant insecticidal toxins produced by Photorhabdus luminescens

2021 ◽  
pp. 161-167
Author(s):  
Ihsan Ullah ◽  
M.S. Al- ghamdi

Photorhabdus is lives in a mutualistic association with nematodes from the family Heterorhabditis. Bacteria of the Photorhabdus can survive independently and cause toxicity in a larger variety of insects. In the present study, insecticidal activity of non-portentous heat-stable metabolites of Photorhabdus luminescens was evaluated against Galleria mellonella. For this purpose, the culture extract of P. luminescens was injected into the G. mellonella larvae, which killed almost 90% of larvae within 48 h. The extract showed 100% insecticidal activity after heat treatment of 70 C for 30 min and even 60% and 40% activity lasted at 80 C and 90 C respectively. The extract also showed a high degree of thermal stability and was 100% actives after 60 min at 70 C. In addition, insecticidal activity was preserved up to 100% after all proteinase-K treatments (0 ?g/mL to 50 ?g/mL). The results revealed that the extracts were non-portentous and showed high thermal resistance and stability. Keywords: Photorhabdus, insecticidal activity, toxins, heat stable non-proteinaceous

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Longfei Li ◽  
Ruirui Shi ◽  
Jianlan Gu ◽  
Yunn Chyn Tung ◽  
Yan Zhou ◽  
...  

AbstractNeurofibrillary tangles (NFTs) made of abnormally hyperphosphorylated tau are a hallmark of Alzheimer’s disease (AD) and related tauopathies. Regional distribution of NFTs is associated with the progression of the disease and has been proposed to be a result of prion-like propagation of misfolded tau. Tau in AD brain is heterogenous and presents in various forms. In the present study, we prepared different tau fractions by sedimentation combined with sarkosyl solubility from AD brains and analyzed their biochemical and pathological properties. We found that tau in oligomeric fraction (O-tau), sarkosyl-insoluble fractions 1 and 2 (SI1-tau and SI2-tau) and monomeric heat-stable fraction (HS-tau) showed differences in truncation, hyperphosphorylation, and resistance to proteinase K. O-tau, SI1-tau, and SI2-tau, but not HS-tau, were hyperphosphorylated at multiple sites and contained SDS- and β-mercaptoethanol–resistant high molecular weight aggregates, which lacked the N-terminal portion of tau. O-tau and SI2-tau displayed more truncation and less hyperphosphorylation than SI1-tau. Resistance to proteinase K was increased from O-tau to SI1-tau to SI2-tau. O-tau and SI1-tau, but not SI2-tau or HS-tau, captured tau from cell lysates and seeded tau aggregation in cultured cells. Heat treatment could not kill the prion-like activity of O-tau to capture normal tau. Hippocampal injection of O-tau into 18-month-old FVB mice induced significant tau aggregation in both ipsilateral and contralateral hippocampi, but SI1-tau only induced tau pathology in the ipsilateral hippocampus, and SI2-tau and HS-tau failed to induce any detectable tau aggregation. These findings suggest that O-tau and SI1-tau have prion-like activities and may serve as seeds to recruit tau and template tau to aggregate, resulting in the propagation of tau pathology. Heterogeneity of tau pathology within AD brain results in different fractions with different biological and prion-like properties, which may pose a major challenge in targeting tau for development of effective therapeutic treatments.


2007 ◽  
Vol 53 (2) ◽  
pp. 284-290 ◽  
Author(s):  
Sonia Chehimi ◽  
François Delalande ◽  
Sophie Sablé ◽  
Mohamed-Rabeh Hajlaoui ◽  
Alain Van Dorsselaer ◽  
...  

We report the isolation and characterization of a new bacteriocin, thuricin S, produced by the Bacillus thuringiensis subsp. entomocidus HD198 strain. This antibacterial activity is sensitive to proteinase K, is heat-stable, and is stable at a variety of pH values (3–10.5). The monoisotopic mass of thuricin S purified by high perfomance liquid chromatography, as determined with mass spectrometry ESI-TOF-MS, is 3137.61 Da. Edman sequencing and NanoESI-MS/MS experiments provided the sequence of the 18 N-terminal amino acids. Interestingly, thuricin S has the same N-terminal sequence (DWTXWSXL) as bacthuricin F4 and thuricin 17, produced by B. thuringiensis strains BUPM4 and NEB17, respectively, and could therefore be classified as a new subclass IId bacteriocin.


2000 ◽  
Vol 109 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Mariana L. Feldman ◽  
Claudia R. Oliva ◽  
Claudia A. Casalongué ◽  
Gustavo R. Daleo

1959 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Ellicott McConnell ◽  
A. Glenn Richards

Bacillus thuringiensis Berliner produces in vitro a heat-stable, dialyzable substance which is toxic for insects when injected. The same or a similar substance is produced in vivo. The toxic principle is of unknown composition. It is heat-stable, water-soluble, dialyzable, and resistant to low temperatures. It is probably neither a protein nor a lipid. Clearly it is distinct from the heat-labile inclusion bodies and from lecithinase. Growth-curve studies showed that the heat-stable toxin appeared in liver broth cultures during the active growth phase, prior to the formation of spores or inclusion bodies. An attempt to produce the toxic principle from culture media in the absence of bacteria was unsuccessful from sterile inocula both from in vivo and in vitro sources. The LD50 for larvae of Galleria mellonella injected with autoclaved supernatant from a 10-day-old liver broth culture of B. thuringiensis was determined to be 0.00036 ml per larva or 0.002 ml per gram of larvae. Approximately the same level of toxicity was found for another caterpillar, a fly larva, and cockroaches. After larvae of Galleria or Pyrausla have been dead for more than 2 days from infection with B. thuringiensis the bacillus could no longer be recovered. A sublethal amount of the heat-stable toxin injected into old larvae of Galleria delayed emergence of the adults by 30 to 40%. The non-pathogenic Bacillus cereus was found to produce a similar-acting, heat-stable toxin under the same conditions that one is produced by B. thuringiensis.


1987 ◽  
Vol 243 (1) ◽  
pp. 309-312 ◽  
Author(s):  
H K Young ◽  
R A Skurray ◽  
S G B Amyes

The trimethoprim-resistance gene located on plasmid pSK1, originally identified in a multi-resistant Staphylococcus aureus from Australia, encodes the production of a dihydrofolate reductase (type S1), which confers a high degree of resistance to its host and is quite unlike any plasmid-encoded dihydrofolate reductase hitherto described. It has a low Mr (19,700) and has a higher specific activity than the constitutive Gram-negative plasmid dihydrofolate reductases. The type S1 enzyme is heat-stable and has a relatively low affinity for the substrate, dihydrofolate (Km 10.8 microM). It is moderately resistant to trimethoprim, and is competitively inhibited by this drug with an inhibitor-binding constant of 11.6 microM. This is the first identification and characterization of a plasmid-encoded trimethoprim-resistant dihydrofolate reductase derived from a Gram-positive species.


Sign in / Sign up

Export Citation Format

Share Document