Faculty Opinions recommendation of Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina.

Author(s):  
Richard H Masland
Neuron ◽  
2002 ◽  
Vol 36 (4) ◽  
pp. 703-712 ◽  
Author(s):  
Michael R Deans ◽  
Bela Volgyi ◽  
Daniel A Goodenough ◽  
Stewart A Bloomfield ◽  
David L Paul

1997 ◽  
Vol 14 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin

AbstractRecent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, supervised, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2–3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.


2021 ◽  
Vol 22 (15) ◽  
pp. 8131
Author(s):  
Uwe Thorsten Lux ◽  
Johanna Ehrenberg ◽  
Anneka Joachimsthaler ◽  
Jenny Atorf ◽  
Bianca Pircher ◽  
...  

Complexins (Cplxs) 1 to 4 are components of the presynaptic compartment of chemical synapses where they regulate important steps in synaptic vesicle exocytosis. In the retina, all four Cplxs are present, and while we know a lot about Cplxs 3 and 4, little is known about Cplxs 1 and 2. Here, we performed in situ hybridization experiments and bioinformatics and exploited Cplx 1 and Cplx 2 single-knockout mice combined with immunocytochemistry and light microscopy to characterize in detail the cell type and synapse-specific distribution of Cplx 1 and Cplx 2. We found that Cplx 2 and not Cplx 1 is the main isoform expressed in normal and displaced amacrine cells and ganglion cells in mouse retinae and that amacrine cells seem to operate with a single Cplx isoform at their conventional chemical synapses. Surprising was the finding that retinal function, determined with electroretinographic recordings, was altered in Cplx 1 but not Cplx 2 single-knockout mice. In summary, the results provide an important basis for future studies on the function of Cplxs 1 and 2 in the processing of visual signals in the mammalian retina.


2003 ◽  
Vol 89 (4) ◽  
pp. 2159-2166 ◽  
Author(s):  
Cun-Jian Dong ◽  
William A. Hare

We examined function of the feedback pathway from A17 GABAergic amacrine cells to rod bipolar cells (A17 feedback), a critically located inhibitory circuit in the classic rod pathway of the mammalian retina whose role in processing of scotopic visual information is still poorly understood. We show evidence that this A17 feedback has a profound influence on the temporal properties of rod-driven postphotoreceptoral responses (assessed with the scotopic electroretinogram b-wave). Application of a GABAcantagonist prolonged preferentially the decay of the scotopic b-wave. The degree of prolongation increased as the light intensity decreased. Application of selective GABAa antagonists accelerated the kinetics of the scotopic b-wave. This effect was abolished when the GABAc antagonist was coapplied. Selective ablation of A17 cells mimicked the action of the GABAc antagonist. In A17 cell–ablated retinas, the GABAc antagonist was no longer very effective to slow the decay of the scotopic b-wave. Thus the A17 feedback, activated by light stimulation and mediated mainly by the GABAc receptors, makes the scotopic b-wave more transient by accelerating preferentially its decay. The strength of the feedback can be modulated by GABAa receptor–mediated inhibition and by light intensity. Our results also suggest that in the mammalian retina the feedback may be a novel mechanism that contributes postphotoreceptorally to the termination of rod signals, especially those elicited by very dim light stimuli.


2020 ◽  
Vol 48 (8) ◽  
pp. 1057-1071 ◽  
Author(s):  
Cameron D. Haydinger ◽  
Thaksaon Kittipassorn ◽  
Daniel J. Peet

2021 ◽  
Vol 11 (8) ◽  
pp. 996
Author(s):  
James P. Trujillo ◽  
Judith Holler

During natural conversation, people must quickly understand the meaning of what the other speaker is saying. This concerns not just the semantic content of an utterance, but also the social action (i.e., what the utterance is doing—requesting information, offering, evaluating, checking mutual understanding, etc.) that the utterance is performing. The multimodal nature of human language raises the question of whether visual signals may contribute to the rapid processing of such social actions. However, while previous research has shown that how we move reveals the intentions underlying instrumental actions, we do not know whether the intentions underlying fine-grained social actions in conversation are also revealed in our bodily movements. Using a corpus of dyadic conversations combined with manual annotation and motion tracking, we analyzed the kinematics of the torso, head, and hands during the asking of questions. Manual annotation categorized these questions into six more fine-grained social action types (i.e., request for information, other-initiated repair, understanding check, stance or sentiment, self-directed, active participation). We demonstrate, for the first time, that the kinematics of the torso, head and hands differ between some of these different social action categories based on a 900 ms time window that captures movements starting slightly prior to or within 600 ms after utterance onset. These results provide novel insights into the extent to which our intentions shape the way that we move, and provide new avenues for understanding how this phenomenon may facilitate the fast communication of meaning in conversational interaction, social action, and conversation.


Sign in / Sign up

Export Citation Format

Share Document