Faculty Opinions recommendation of Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.

Author(s):  
Suneel Apte
2015 ◽  
Vol 112 (45) ◽  
pp. 14012-14017 ◽  
Author(s):  
Lior Zilberberg ◽  
Colin K. L. Phoon ◽  
Ian Robertson ◽  
Branka Dabovic ◽  
Francesco Ramirez ◽  
...  

Marfan syndrome (MFS) is an autosomal dominant disorder of connective tissue, caused by mutations of the microfibrillar protein fibrillin-1, that predisposes affected individuals to aortic aneurysm and rupture and is associated with increased TGFβ signaling. TGFβ is secreted from cells as a latent complex consisting of TGFβ, the TGFβ propeptide, and a molecule of latent TGFβ binding protein (LTBP). Improper extracellular localization of the latent complex can alter active TGFβ levels, and has been hypothesized as an explanation for enhanced TGFβ signaling observed in MFS. We previously reported the absence of LTBP-3 in matrices lacking fibrillin-1, suggesting that perturbed TGFβ signaling in MFS might be due to defective interaction of latent TGFβ complexes containing LTBP-3 with mutant fibrillin-1 microfibrils. To test this hypothesis, we genetically suppressed Ltbp3 expression in a mouse model of progressively severe MFS. Here, we present evidence that MFS mice lacking LTBP-3 have improved survival, essentially no aneurysms, reduced disruption and fragmentation of medial elastic fibers, and decreased Smad2/3 and Erk1/2 activation in their aortas. These data suggest that, in MFS, improper localization of latent TGFβ complexes composed of LTBP-3 and TGFβ contributes to aortic disease progression.


Author(s):  
Cristina Arce ◽  
Isaac Rodríguez-Rovira ◽  
Karo De Rycke ◽  
Karina Durán ◽  
Victoria Campuzano ◽  
...  

Objective: We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results: We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFβ signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfβ1 and Tgfβ2 mRNA levels. Conclusions: P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFβ signaling during the early stages of aortic disease progression.


VASA ◽  
2017 ◽  
Vol 46 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Alejandra María Zúñiga-Muñoz ◽  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Elías Núñez-Garrido ◽  
Rodrigo Velázquez Espejel ◽  
...  

Abstract. Background: Aortic dilatation in Marfan syndrome (MFS) is progressive. It is associated with oxidative stress and endothelial dysfunction that contribute to the early acute dissection of the vessel and can result in rupture of the aorta and sudden death. We evaluated the participation of the glutathione (GSH) system, which could be involved in the mechanisms that promote the formation and progression of the aortic aneurysms in MFS patients. Patients and methods: Aortic aneurysm tissue was obtained during chest surgery from eight control subjects and 14 MFS patients. Spectrophotometrical determination of activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO) index, carbonylation, total antioxidant capacity (TAC), and concentration of reduced and oxidized glutathione (GSH and GSSG respectively), was performed in the homogenate from aortic aneurysm tissue. Results: LPO index, carbonylation, TGF-β1, and GR activity were increased in MFS patients (p < 0.04), while TAC, GSH/GSSG ratio, GPx, and GST activity were significantly decreased (p < 0.04). Conclusions: The depletion of GSH, in spite of the elevated activity of GR, not only diminished the activity of GSH-depend GST and GPx, but increased LPO, carbonylation and decreased TAC. These changes could promote the structural and functional alterations in the thoracic aorta of MFS patients.


Author(s):  
Anna-Maria Siegert ◽  
Gerardo García Díaz-Barriga ◽  
Anna Esteve-Codina ◽  
Miquel Navas-Madroñal ◽  
Darya Gorbenko del Blanco ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ashley Dawson ◽  
Yanming Li ◽  
Pingping Ren ◽  
Hernan Vasquez ◽  
Chen Zhang ◽  
...  

Background: Marfan syndrome (MFS) is caused by mutations in the gene for fibrillin-1 ( FBN1 ); however, the mechanisms by which these mutations cause aortic aneurysms are poorly understood. Although it was hypothesized previously that dysregulation of the complex TGF-β signaling pathway leads to aortic aneurysm formation, FBN1 mutations appear to have a paradoxical effect on TGF-β signaling in MFS. In this study, we evaluated cell-specific TGF-β expression in non-immune cells in MFS aortic tissue. Methods: We performed single-cell RNA sequencing of ascending aortic aneurysm tissues from MFS patients (n=3) undergoing aneurysm repair and age-matched, non-aneurysmal control tissue from cardiac transplant donors and recipients (n=4). Non-immune cells were separated out from the data and analyzed using the Seurat package in R. Differentially expressed genes were identified using edgeR. Results: Conserved gene expression was used to identify populations of smooth muscle cells (SMCs; n=6), fibroblasts (n=3), and endothelial cells (ECs; n=3). We found that TGFB1 was significantly upregulated in quiescent fibroblasts (identified by increased expression of DCN , LUM , and complement factors) with log2FC of 1.30 and FDR 8.25x10 -8 , as well as in activated fibroblasts (identified by increased expression of genes involved in blood vessel repair and healing including ACTA2 , NOTCH3 , THBS2 , and PDGFRB ) with log2FC of 1.25 and FDR 6.15x10 -22 . Despite this increase in TGFB1 , expression of TGF-β receptor genes (predominately TGFBR2 ) as well as downstream SMAD genes was downregulated significantly in the SMC, fibroblast, and endothelial cell clusters. Finally, genes involved in the non-canonical TGF-β pathway, including ERK , JNK, and p38, were not differentially expressed in non-immune cells in MFS compared with control tissues. Conclusion: Increased expression of TGFB1 in non-immune cells in MFS was driven by two clusters of fibroblasts. Despite this, our data do not support associated upregulation of other genes in the canonical or non-canonical TGF-β pathways and in fact support downregulation of canonical TGF-β signaling in non-immune cells of aneurysmal tissues from MFS patients with advanced aortic disease.


Sign in / Sign up

Export Citation Format

Share Document