Faculty Opinions recommendation of Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome.

Author(s):  
Eric Westhof
2017 ◽  
Vol 372 (1716) ◽  
pp. 20160182 ◽  
Author(s):  
Marina V. Rodnina ◽  
Niels Fischer ◽  
Cristina Maracci ◽  
Holger Stark

Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNA Sec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.


1971 ◽  
Vol 246 (18) ◽  
pp. 5854-5856
Author(s):  
Samir K. Mitra ◽  
Arthur N. Ley ◽  
Christopher J. Smith

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 600
Author(s):  
Sundaramoorthy Srinivasan ◽  
Adrian Gabriel Torres ◽  
Lluís Ribas de Pouplana

The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.


2009 ◽  
Vol 10 (10) ◽  
pp. 654-655
Author(s):  
Kim Baumann

2017 ◽  
Vol 36 (16) ◽  
pp. 4182-4196 ◽  
Author(s):  
Kailas D. Sonawane ◽  
Asmita S. Kamble ◽  
Prayagraj M. Fandilolu

2004 ◽  
Vol 101 (34) ◽  
pp. 12748-12752 ◽  
Author(s):  
C. Paolini ◽  
J. D. Fessenden ◽  
I. N. Pessah ◽  
C. Franzini-Armstrong

Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 895-907 ◽  
Author(s):  
Kevin Vincent ◽  
Qiang Wang ◽  
Steven Jay ◽  
Kathryn Hobbs ◽  
Brian C Rymond

AbstractClf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Δ2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Δ2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Δ2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.


Sign in / Sign up

Export Citation Format

Share Document