Faculty Opinions recommendation of Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells.

Author(s):  
Lindsey Hutt-Fletcher
2000 ◽  
Vol 74 (21) ◽  
pp. 9964-9971 ◽  
Author(s):  
Alexandra M. Joseph ◽  
Gregory J. Babcock ◽  
David A. Thorley-Lawson

ABSTRACT In this paper we demonstrate, for the first time, that Epstein-Barr virus (EBV)-infected cells expressing the lymphoblastoid growth program are present in healthy carriers of the virus. Previously we observed that latently infected naive B cells are present in tonsils only when viral replication is detected, suggesting that these may represent newly infected B cells. We have tested this idea by performing a reverse transcription-PCR analysis for the expression of latent genes (EBNA2 and the EBNA3s) that are characteristically expressed only by newly infected cells expressing the growth latency program. EBNA2 expression is regularly detected in purified naive (IgD+) tonsillar B cells (13 of 16 tonsils tested) but was never found in the IgD− population (0 of 16). More detailed analysis revealed that the mRNAs for the latent genes EBNA1 (3 of 3 tonsils tested), EBNA3a (3 of 5), EBNA3b (3 of 5), EBNA3c (3 of 5), LMP1 (6 of 6), and LMP2 (5 of 6) were also present in the IgD+ population, but the EBNA1Q-K transcript, characteristic of nonlymphoblastoid forms of latency, was never detected (0 of 6). Finally, we demonstrate that the latently infected naive (IgD+) cells express CD80 (B7.1), a marker characteristically expressed on activated naive lymphoblasts but absent from resting naive B cells. The infected naive (IgD+) population in the tonsil therefore has the viral and cellular phenotype of a B-cell directly infected with EBV—an activated lymphoblast expressing the growth program.


2004 ◽  
Vol 78 (10) ◽  
pp. 5194-5204 ◽  
Author(s):  
Donna Hochberg ◽  
Tatyana Souza ◽  
Michelle Catalina ◽  
John L. Sullivan ◽  
Katherine Luzuriaga ◽  
...  

ABSTRACT In this paper we demonstrate that during acute infection with Epstein-Barr virus (EBV), the peripheral blood fills up with latently infected, resting memory B cells to the point where up to 50% of all the memory cells may carry EBV. Despite this massive invasion of the memory compartment, the virus remains tightly restricted to memory cells, such that, in one donor, fewer than 1 in 104 infected cells were found in the naive compartment. We conclude that, even during acute infection, EBV persistence is tightly regulated. This result confirms the prediction that during the early phase of infection, before cellular immunity is effective, there is nothing to prevent amplification of the viral cycle of infection, differentiation, and reactivation, causing the peripheral memory compartment to fill up with latently infected cells. Subsequently, there is a rapid decline in infected cells for the first few weeks that approximates the decay in the cytotoxic-T-cell responses to viral replicative antigens. This phase is followed by a slower decline that, even by 1 year, had not reached a steady state. Therefore, EBV may approach but never reach a stable equilibrium.


2008 ◽  
Vol 82 (21) ◽  
pp. 10436-10443 ◽  
Author(s):  
Fang Lu ◽  
Andreas Weidmer ◽  
Chang-Gong Liu ◽  
Stefano Volinia ◽  
Carlo M. Croce ◽  
...  

ABSTRACT MicroRNAs have been implicated in the modulation of gene expression programs important for normal and cancer cell development. miR-155 is known to play a role in B-cell development and is upregulated in various B-cell lymphomas, including several that are latently infected with Epstein-Barr virus (EBV). We show here that EBV infection of primary human B lymphocytes leads to the sustained elevation of miR-155 and its precursor RNA, BIC. The EBV-encoded latency membrane protein 1 (LMP1) can partially reconstitute BIC activation in B lymphocytes but not in epithelial cell cultures. LMP1 is a potent activator of NF-κB signaling pathways and is essential for EBV immortalization of B lymphocytes. An inhibitor to miR-155 further stimulated NF-κB responsive gene transcription, and IKKε was identified as a potential target of miR-155 translational repression. Remarkably, miR-155 inhibitor reduced EBNA1 mRNA and the EBV copy number in latently infected cells. This suggests that miR-155 contributes to EBV immortalization by modulation of NF-κB signaling and the suppression of host innate immunity to latent viral infection.


Cancers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 237 ◽  
Author(s):  
Asuka Nanbo ◽  
Harutaka Katano ◽  
Michiyo Kataoka ◽  
Shiho Hoshina ◽  
Tsuyoshi Sekizuka ◽  
...  

Infection of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, is associated with various malignancies in B lymphocytes and epithelial cells. EBV encodes 49 microRNAs in two separated regions, termed the BART and BHRF1 loci. Although accumulating evidence demonstrates that EBV infection regulates the profile of microRNAs in the cells, little is known about the microRNAs in exosomes released from infected cells. Here, we characterized the expression profile of intracellular and exosomal microRNAs in EBV-negative, and two related EBV-infected Burkitt lymphoma cell lines having type I and type III latency by next-generation sequencing. We found that the biogenesis of exosomes is upregulated in type III latently infected cells compared with EBV-negative and type I latently infected cells. We also observed that viral and several specific host microRNAs were predominantly incorporated in the exosomes released from the cells in type III latency. We confirmed that multiple viral microRNAs were transferred to the epithelial cells cocultured with EBV-infected B cells. Our findings indicate that EBV infection, in particular in type III latency, modulates the biogenesis of exosomes and the profile of exosomal microRNAs, potentially contributing to phenotypic changes in cells receiving these exosomes.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Tiffany R. Frey ◽  
Jozan Brathwaite ◽  
Xiaofan Li ◽  
Sandeepta Burgula ◽  
Ibukun A. Akinyemi ◽  
...  

ABSTRACT Lytic activation from latency is a key transition point in the life cycle of herpesviruses. Epstein-Barr virus (EBV) is a human herpesvirus that can cause lymphomas, epithelial cancers, and other diseases, most of which require the lytic cycle. While the lytic cycle of EBV can be triggered by chemicals and immunologic ligands, the lytic cascade is activated only when expression of the EBV latent-to-lytic switch protein ZEBRA is turned on. ZEBRA then transcriptionally activates other EBV genes and, together with some of those gene products, ensures completion of the lytic cycle. However, not every latently infected cell exposed to a lytic trigger turns on the expression of ZEBRA, resulting in responsive and refractory subpopulations. What governs this dichotomy? By examining the nascent transcriptome following exposure to a lytic trigger, we find that several cellular genes are transcriptionally upregulated temporally upstream of ZEBRA. These genes regulate lytic susceptibility to various degrees in latently infected cells that respond to mechanistically distinct lytic triggers. While increased expression of these cellular genes defines a prolytic state, such upregulation also runs counter to the well-known mechanism of viral-nuclease-mediated host shutoff that is activated downstream of ZEBRA. Furthermore, a subset of upregulated cellular genes is transcriptionally repressed temporally downstream of ZEBRA, indicating an additional mode of virus-mediated host shutoff through transcriptional repression. Thus, increased transcription of a set of host genes contributes to a prolytic state that allows a subpopulation of cells to support the EBV lytic cycle. IMPORTANCE Transition from latency to the lytic phase is necessary for herpesvirus-mediated pathology as well as viral spread and persistence in the population at large. Yet, viral genomes in only some cells in a population of latently infected cells respond to lytic triggers, resulting in subpopulations of responsive/lytic and refractory cells. Our investigations into this partially permissive phenotype of the herpesvirus Epstein-Barr virus (EBV) indicate that upon exposure to lytic triggers, certain cellular genes are transcriptionally upregulated, while viral latency genes are downregulated ahead of expression of the viral latent-to-lytic switch protein. These cellular genes contribute to lytic susceptibility to various degrees. Apart from indicating that there may be a cellular “prolytic” state, our findings indicate that (i) early transcriptional upregulation of cellular genes counters the well-known viral-nuclease-mediated host shutoff and (ii) subsequent transcriptional downregulation of a subset of early upregulated cellular genes is a previously undescribed mode of host shutoff.


Science ◽  
1986 ◽  
Vol 232 (4757) ◽  
pp. 1554-1556 ◽  
Author(s):  
A Faggioni ◽  
C Zompetta ◽  
S Grimaldi ◽  
G Barile ◽  
L Frati ◽  
...  

1993 ◽  
Vol 33 (1) ◽  
pp. 89-91 ◽  
Author(s):  
James P. Stewart ◽  
Alan T. McGown ◽  
Joseph Prendiville ◽  
George R. Pettit ◽  
Brian W. Fox ◽  
...  

Virology ◽  
1979 ◽  
Vol 94 (1) ◽  
pp. 228-231 ◽  
Author(s):  
Janos Luka ◽  
Bengt Kallin ◽  
George Klein

Sign in / Sign up

Export Citation Format

Share Document