Faculty Opinions recommendation of Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein.

Author(s):  
Martin Gruebele
1982 ◽  
Vol 205 (2) ◽  
pp. 457-460 ◽  
Author(s):  
R Malathi ◽  
N Yathindra

A distance plot obtained using the blocked nucleotide concept, which regards the repeating nucleotide moieties to be made up of two blocks of nearly equal magnitude, has permitted us to visualize the polynucleotide backbone folding in yeast tRNAPhe. The plot clearly manifests medium- and long-range tertiary interactions involving various structural domains. Apart from the well known T psi-D loop interactions, other long-range interactions associated with the variable loop as well as the D loop are explicitly seen. Most importantly, the plot reveals an approximate two-fold symmetry in the molecule between the domains related to the tertiary interactions in addition to the symmetry between long helical domains. The different patterns on the plot are interpreted in terms of helix-helix, loop-helix and loop-loop interactions.


2019 ◽  
Author(s):  
Amberley D. Stephens ◽  
Maria Zacharopoulou ◽  
Rani Moons ◽  
Giuliana Fusco ◽  
Neeleema Seetaloo ◽  
...  

AbstractAs an intrinsically disordered protein, monomeric alpha synuclein (aSyn) constantly reconfigures and probes the conformational space. Long-range interactions across the protein maintain its solubility and mediate this dynamic flexibility, but also provide residual structure. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. By using calcium to perturb the conformational ensemble, we observe differences in structure and intra-molecular dynamics between two aSyn C-terminal variants, D121A and pS129, and the aSyn familial disease mutants, A30P, E46K, H50Q, G51D, A53T and A53E, compared to wild-type (WT) aSyn. We observe that the more exposed the N-terminus and the beginning of the NAC region are, the more aggregation prone monomeric aSyn conformations become. N-terminus exposure occurs upon release of C-terminus interactions when calcium binds, but the level of exposure is specific to the aSyn mutation present. There was no correlation between single charge alterations, calcium affinity, or the number of ions bound on aSyn’s aggregation propensity, indicating that sequence or post-translation modification (PTM)-specific conformational differences between the N- and C-termini and the specific local environment mediate aggregation propensity instead. Understanding aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein, to stabilise aSyn in non-aggregation prone conformations, by either preserving long-range interactions between the N- and C-termini or by protecting the N-terminus from exposure.


2015 ◽  
Author(s):  
Van K Duesterberg ◽  
Irena T Fischer-Hwang ◽  
Christian F Perez ◽  
Daniel W Hogan ◽  
Steven M Block

2014 ◽  
Vol 136 (18) ◽  
pp. 6643-6648 ◽  
Author(s):  
Xuesong Shi ◽  
Namita Bisaria ◽  
Tara L. Benz-Moy ◽  
Steve Bonilla ◽  
Dmitri S. Pavlichin ◽  
...  

2005 ◽  
Vol 102 (5) ◽  
pp. 1430-1435 ◽  
Author(s):  
C. W. Bertoncini ◽  
Y.-S. Jung ◽  
C. O. Fernandez ◽  
W. Hoyer ◽  
C. Griesinger ◽  
...  

2020 ◽  
Author(s):  
Jeffrey E. Ehrhardt ◽  
Kevin M. Weeks

AbstractMethods for capturing the folding dynamics of functionally important RNAs, especially large RNAs, have relied primarily on global measurements of structure or on per-nucleotide chemical probing. These approaches infer, but do not directly measure, through-space tertiary interactions. Here we introduce trimethyloxonium (TMO) as a chemical probe for RNA. TMO enables time-resolved, single-molecule, through-space structure probing of RNA folding using a correlated chemical probing framework. TMO methylates RNA about 90 times faster than the widely used dimethyl sulfate probe, allowing structure interrogation on the second time scale. We used TMO to monitor folding of the RNase P RNA – a functional RNA with extensive long-range and noncanonical interactions – by direct measurement of through-space tertiary interactions in a time-resolved way. Time-dependent correlation changes directly revealed the central role of a long-range tertiary loop-loop interaction that guides native RNA folding. Single-molecule, time-resolved RNA structure probing with TMO is poised to reveal a wide range of dynamic RNA folding processes and principles of RNA folding.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Van K Duesterberg ◽  
Irena T Fischer-Hwang ◽  
Christian F Perez ◽  
Daniel W Hogan ◽  
Steven M Block

The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that modifies gene expression in response to TPP concentration. Its specificity is dependent upon conformational changes that take place within its aptamer domain. Here, the role of tertiary interactions in ligand binding was studied at the single-molecule level by combined force spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for simultaneous smFRET. The ‘Force-FRET’ approach directly probes secondary and tertiary structural changes during folding, including events associated with binding. Concurrent transitions observed in smFRET signals and RNA extension revealed differences in helix-arm orientation between two previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary docking interaction that completes the binding process. Long-range tertiary interactions stabilize global riboswitch structure and confer increased ligand specificity.


Sign in / Sign up

Export Citation Format

Share Document