Faculty Opinions recommendation of High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.

Author(s):  
Burckhard Seelig
2017 ◽  
Vol 89 (22) ◽  
pp. 12569-12577 ◽  
Author(s):  
Xixian Wang ◽  
Lihui Ren ◽  
Yetian Su ◽  
Yuetong Ji ◽  
Yaoping Liu ◽  
...  

2016 ◽  
Vol 21 (9) ◽  
pp. 931-941 ◽  
Author(s):  
Karsten Boehnke ◽  
Philip W. Iversen ◽  
Dirk Schumacher ◽  
María José Lallena ◽  
Rubén Haro ◽  
...  

The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jordan S Leyton-Mange ◽  
Robert W Mills ◽  
Min-Young Jang ◽  
Xaio Ling ◽  
Patrick T Ellinor ◽  
...  

Introduction: The lack of high quality predictive models for drug-induced QT prolongation continues to be a significant problem in pharmaceutical development. While human pluripotent stem cell derived-cardiomyocytes (hPSC-CMs) hold promise to be a valuable tool for drug discovery, efforts have been frustrated by the labor-intensive nature of electrophysiological recordings and the heterogeneity of hPSC-CMs populations. Methods: Using lentivirus, we introduced the genetically encoded fluorescent voltage reporter, A242-Arclight, into hPSC-CM monolayers in multi-well plates. An inverted fluorescence microscope was fit with an environmentally controlled enclosure and automated stage. High speed imaging with a Photometrics Evolve 128 EMCCD camera was performed at baseline and after administration of test compounds. Optical traces were processed using a custom program and composite AP durations, APD80, were compared before and after drug application (Figures A & B). Results: Baseline APD80 values displayed high degree of consistency between wells: 483±59 msec. High-throughput data acquisition demonstrated dose dependent APD80 increases from all QT-prolonging agents tested as well as dose dependent APD80 decrease from pinacidil. In contrast, negative control compounds caused no significant changes in APD80. Results from a representative plate are shown (Figure C). Conclusions: Optical measurements provide rapid recordings of drug-induced AP duration changes, and offer a strategy to non-invasively screen hPSC-CMs in high-throughput. Recording from cell monolayers as opposed to single cells and using paired comparisons may be beneficial in addressing the heterogeneity amongst hPSC-CM preparations.


2018 ◽  
Author(s):  
Yang Shen ◽  
Nard Kubben ◽  
Julián Candia ◽  
Alexandre V. Morozov ◽  
Tom Misteli ◽  
...  

AbstractBackgroundImage-based high-throughput screening (HTS) reveals a high level of heterogeneity in single cells and multiple cellular states may be observed within a single population. Cutting-edge high-dimensional analysis methods are successful in characterizing cellular heterogeneity, but they suffer from the “curse of dimensionality” and non-standardized outputs.ResultsHere we introduce RefCell, a multi-dimensional analysis pipeline for image-based HTS that reproducibly captures cells with typical combinations of features in reference states, and uses these “typical cells” as a reference for classification and weighting of metrics. RefCell quantitatively assesses the heterogeneous deviations from typical behavior for each analyzed perturbation or sample.ConclusionsWe apply RefCell to the analysis of data from a high-throughput imaging screen of a library of 320 ubiquitin protein targeted siRNAs selected to gain insights into the mechanisms of premature aging (progeria). RefCell yields results comparable to a more complex clustering based single cell analysis method, which both reveal more potential hits than conventional average based analysis.


2018 ◽  
Vol 23 (7) ◽  
pp. 719-731
Author(s):  
Mei Ding ◽  
Roger Clark ◽  
Catherine Bardelle ◽  
Anna Backmark ◽  
Tyrrell Norris ◽  
...  

Flow cytometry is a powerful tool providing multiparametric analysis of single cells or particles. The introduction of faster plate-based sampling technologies on flow cytometers has transformed the technology into one that has become attractive for higher throughput drug discovery screening. This article describes AstraZeneca’s perspectives on the deployment and application of high-throughput flow cytometry (HTFC) platforms for small-molecule high-throughput screening (HTS), structure–activity relationship (SAR) and phenotypic screening, and antibody screening. We describe the overarching HTFC workflow, including the associated automation and data analysis, along with a high-level overview of our HTFC assay portfolio. We go on to discuss the practical challenges encountered and solutions adopted in the course of our deployment of HTFC, as well as future enhancements and expansion of the technology to new areas of drug discovery.


2005 ◽  
Vol 12 (12) ◽  
pp. 1281-1289 ◽  
Author(s):  
Amir Aharoni ◽  
Gil Amitai ◽  
Kalia Bernath ◽  
Shlomo Magdassi ◽  
Dan S. Tawfik

Sign in / Sign up

Export Citation Format

Share Document