droplet sorting
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
Sadat Hasan ◽  
Maximilian E. Blaha ◽  
Sebastian K. Piendl ◽  
Anish Das ◽  
David Geissler ◽  
...  

AbstractMicrofluidic droplet sorting systems facilitate automated selective micromanipulation of compartmentalized micro- and nano-entities in a fluidic stream. Current state-of-the-art droplet sorting systems mainly rely on fluorescence detection in the visible range with the drawback that pre-labeling steps are required. This limits the application range significantly, and there is a high demand for alternative, label-free methods. Therefore, we introduce time-resolved two-photon excitation (TPE) fluorescence detection with excitation at 532 nm as a detection technique in droplet microfluidics. This enables label-free in-droplet detection of small aromatic compounds that only absorb in a deep-UV spectral region. Applying time-correlated single-photon counting, compounds with similar emission spectra can be distinguished due to their fluorescence lifetimes. This information is then used to trigger downstream dielectrophoretic droplet sorting. In this proof-of-concept study, we developed a polydimethylsiloxane-fused silica (FS) hybrid chip that simultaneously provides a very high optical transparency in the deep-UV range and suitable surface properties for droplet microfluidics. The herein developed system incorporating a 532-nm picosecond laser, time-correlated single-photon counting (TCSPC), and a chip-integrated dielectrophoretic pulsed actuator was exemplarily applied to sort droplets containing serotonin or propranolol. Furthermore, yeast cells were screened using the presented platform to show its applicability to study cells based on their protein autofluorescence via TPE fluorescence lifetime at 532 nm. Graphical abstract


2021 ◽  
pp. 127417
Author(s):  
Yuxin Qiao ◽  
Ran Hu ◽  
Dongwei Chen ◽  
Li Wang ◽  
Zhiyi Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 93 (38) ◽  
pp. 13008-13013
Author(s):  
Todd A. Duncombe ◽  
Aaron Ponti ◽  
Florian P. Seebeck ◽  
Petra S. Dittrich

2021 ◽  
Author(s):  
Jian Wei Khor ◽  
Ulri N Lee ◽  
Jean Berthier ◽  
Erwin Berthier ◽  
Ashleigh B Theberge

We developed an open channel droplet microfluidics system that autonomously generates droplets by utilizing competing hydrostatic and capillary pressure. With only our open channel PTFE device, pipettes, and commercially available carrier fluid, we produce hundreds of microliter droplets; tubing, electronics, or pumps are not required, making droplet technology feasible for research labs without external flow generators. Furthermore, we demonstrated conceptual applications that showcase the process of droplet generation, splitting, transport, incubation, mixing, and sorting in our system. Unlike conventional droplet microfluidics, the open nature of the device enables the use of physical tools such as tweezers and styli to directly access the system; with this, we developed a new method of droplet sorting and transfer that capitalizes on the Cheerios effect, the aggregation of buoyant objects along a liquid interface. Our open channel platform offers enhanced usability, direct access to the droplet contents, easy manufacturability, compact footprint, and high customizability.


2021 ◽  
Author(s):  
Huiling Yuan ◽  
Ran Tu ◽  
Xinwei Tong ◽  
Yuping Lin ◽  
Qinhong Wang

Abstract Backgroundα-Amylases is one of the most important starch degrading enzymes and has the widest range of industrial applications. Bacillus licheniformis has been widely used as a cell factory for industrial production of amylase. However, difficulties in genetic modification of B. licheniformis have limited its widespread use. Directed evolution, based on the combination of random mutagenesis and high throughput screening (HTS), has been proven an effective strategy in strain improvement for increasing the productivity, but it requires a suitable HTS system to screen the desired mutants. Droplet-based microfluidics has emerged as a powerful tool for single-cell screening with ultra-high throughput, however, the accessibility of a droplet microfluidic HTS platform to users having no background in microfluidics is still an issue. ResultsHere, we first developed a microfluidic HTS platform based on fluorescence-activated droplet sorting (FADS) technology. This platform allowed (i) encapsulation of single cells in monodisperse water-in-oil droplets; (ii) cell growth and protein production in droplets; (iii) sorting of droplets based on their fluorescence intensities. To validate the platform, a model selection experiment of a binary mixture of Bacillus strains was performed and a 45.6-fold enrichment was achieved at a sorting rate of 300 droplets per second. Furthermore, we used the platform for the selection of higher α-amylase-producing strains from a library of B. licheniformis strains (a strain already used at industrial-scale). The B. licheniformis mutant library was generated by atmospheric and room temperature plasma (ARTP) mutagenesis. The clones displaying over 50% improvement in α-amylases productivity compared to the wild-type were isolated.ConclusionsWe established an efficient droplet microfluidic platform which consisted of droplet generation, droplet incubation, and sorting of droplets with a throughput of up to 1 × 106 droplets per h. The screening platform was demonstrated by successfully identifying B. licheniformis clones with improved α-amylase production. We believe that the droplet platform could be extended to the development of other industrially valuable strains.


2021 ◽  
Author(s):  
David Conchouso ◽  
Amani Al-Ma’abadi ◽  
Hayedeh Behzad ◽  
Mohammed Alarawi ◽  
Masahito Hosokawa ◽  
...  

<p>Droplet microfluidics techniques have shown promising results to study single-cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant because of the field’s complex and multidisciplinary nature. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single-cells in droplets at a rate of ~ 250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescent activated droplet sorting (FADS) systems to integrate the use of 4 independent fluorescence-exciting lasers (e.g., 405, 488, 561, 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger was also integrated into our method to enable adding new reagents to already made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput (> 50,000 cells/day) capabilities to mining and bioprospecting metagenomic data.</p>


2021 ◽  
Author(s):  
David Conchouso ◽  
Amani Al-Ma’abadi ◽  
Hayedeh Behzad ◽  
Mohammed Alarawi ◽  
Masahito Hosokawa ◽  
...  

<p>Droplet microfluidics techniques have shown promising results to study single-cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant because of the field’s complex and multidisciplinary nature. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single-cells in droplets at a rate of ~ 250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescent activated droplet sorting (FADS) systems to integrate the use of 4 independent fluorescence-exciting lasers (e.g., 405, 488, 561, 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger was also integrated into our method to enable adding new reagents to already made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput (> 50,000 cells/day) capabilities to mining and bioprospecting metagenomic data.</p>


2021 ◽  
Author(s):  
Saurabh Vyawahare ◽  
Michael Brundage ◽  
Aleksandra Kijac ◽  
Michael Gutierrez ◽  
Martina de Geus ◽  
...  

Droplet microfluidics is a commercially successful technology, widely used in single cell sequencing and droplet PCR. Combining droplet making with droplet sorting has also been demonstrated, but so far found limited use, partly due to difficulties in scaling manufacture with injection molded plastics. We introduce a droplet sorting system with several new elements, including: 1) an electrode design combining metallic and ionic liquid parts, 2) a modular, multi-sorting fluidic design with features for keeping inter-droplet distances constant, 3) using timing parameters calculated from fluorescence or scatter signal triggers to precisely actuate dozens of sorting electrodes, 4) droplet collection techniques, including ability to collect a single droplet, and 5) a new emulsion breaking method to collect aqueous samples for downstream analysis. We use these technologies to build a fluorescence based cell sorter that sorts with high purity. We also show that these microfluidic designs can be translated into injection molded thermoplastic, suitable for industrial production. Finally, we tally the advantages and limitations of these devices.


2021 ◽  
Author(s):  
Yuxin Qiao ◽  
Ran Hu ◽  
Dongwei Chen ◽  
Li Wang ◽  
Ye Fu ◽  
...  

It is a great challenge to expand the spectrum of enzymes that can decompose synthetic plastics such as Polyethylene terephthalate (PET). However, a bottleneck remains due to the lack of techniques for detecting and sorting environmental microorganisms with vast diversity and abundance. Here, we developed a fluorescence-activated droplet sorting (FADS) pipeline for high-throughput screening of PET-degrading microorganisms or enzymes (PETases). The pipeline comprises three steps: generation of droplets encapsulating single cells, picoinjection of Fluorescein dibenzoate (FDBz) as the fluorogenic probe, and screening of droplets to obtain PET-degrading cells. We characterized critical factors associated with the method, including specificity and sensitivity for discriminating PETase from other enzymes, and optimized its performance and compatibility with environmental samples. The system was used to screen an environmental sample from a PET textile mill, successfully obtained PET-degrading species belonging to 9 different genera. Moreover, two putative PETases from isolates Kineococcus endophyticus Un-5 and Staphylococcus epidermidis Un-C2-8 were genetically derived, heterologously expressed, and preliminarily validated for PET-degrading activities. We speculate the FADS pipeline can be widely adopted to discover new PET-degrading microorganisms and enzymes from various environments, as well as directed evolution of PETases using synthetic biology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaozhi Fu ◽  
Yueying Zhang ◽  
Qiang Xu ◽  
Xiaomeng Sun ◽  
Fanda Meng

Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.


Sign in / Sign up

Export Citation Format

Share Document