scholarly journals Determining Membrane Protein Topologies in Single Cells and High‐Throughput Screening Applications

Author(s):  
Christian Wunder ◽  
Jennifer Lippincott‐Schwartz ◽  
Holger Lorenz
2017 ◽  
Vol 89 (22) ◽  
pp. 12569-12577 ◽  
Author(s):  
Xixian Wang ◽  
Lihui Ren ◽  
Yetian Su ◽  
Yuetong Ji ◽  
Yaoping Liu ◽  
...  

2016 ◽  
Vol 21 (9) ◽  
pp. 931-941 ◽  
Author(s):  
Karsten Boehnke ◽  
Philip W. Iversen ◽  
Dirk Schumacher ◽  
María José Lallena ◽  
Rubén Haro ◽  
...  

The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jordan S Leyton-Mange ◽  
Robert W Mills ◽  
Min-Young Jang ◽  
Xaio Ling ◽  
Patrick T Ellinor ◽  
...  

Introduction: The lack of high quality predictive models for drug-induced QT prolongation continues to be a significant problem in pharmaceutical development. While human pluripotent stem cell derived-cardiomyocytes (hPSC-CMs) hold promise to be a valuable tool for drug discovery, efforts have been frustrated by the labor-intensive nature of electrophysiological recordings and the heterogeneity of hPSC-CMs populations. Methods: Using lentivirus, we introduced the genetically encoded fluorescent voltage reporter, A242-Arclight, into hPSC-CM monolayers in multi-well plates. An inverted fluorescence microscope was fit with an environmentally controlled enclosure and automated stage. High speed imaging with a Photometrics Evolve 128 EMCCD camera was performed at baseline and after administration of test compounds. Optical traces were processed using a custom program and composite AP durations, APD80, were compared before and after drug application (Figures A & B). Results: Baseline APD80 values displayed high degree of consistency between wells: 483±59 msec. High-throughput data acquisition demonstrated dose dependent APD80 increases from all QT-prolonging agents tested as well as dose dependent APD80 decrease from pinacidil. In contrast, negative control compounds caused no significant changes in APD80. Results from a representative plate are shown (Figure C). Conclusions: Optical measurements provide rapid recordings of drug-induced AP duration changes, and offer a strategy to non-invasively screen hPSC-CMs in high-throughput. Recording from cell monolayers as opposed to single cells and using paired comparisons may be beneficial in addressing the heterogeneity amongst hPSC-CM preparations.


2018 ◽  
Author(s):  
Yang Shen ◽  
Nard Kubben ◽  
Julián Candia ◽  
Alexandre V. Morozov ◽  
Tom Misteli ◽  
...  

AbstractBackgroundImage-based high-throughput screening (HTS) reveals a high level of heterogeneity in single cells and multiple cellular states may be observed within a single population. Cutting-edge high-dimensional analysis methods are successful in characterizing cellular heterogeneity, but they suffer from the “curse of dimensionality” and non-standardized outputs.ResultsHere we introduce RefCell, a multi-dimensional analysis pipeline for image-based HTS that reproducibly captures cells with typical combinations of features in reference states, and uses these “typical cells” as a reference for classification and weighting of metrics. RefCell quantitatively assesses the heterogeneous deviations from typical behavior for each analyzed perturbation or sample.ConclusionsWe apply RefCell to the analysis of data from a high-throughput imaging screen of a library of 320 ubiquitin protein targeted siRNAs selected to gain insights into the mechanisms of premature aging (progeria). RefCell yields results comparable to a more complex clustering based single cell analysis method, which both reveal more potential hits than conventional average based analysis.


2017 ◽  
Vol 11 (2) ◽  
pp. 024118 ◽  
Author(s):  
Jeremy M. Schieferstein ◽  
Ashtamurthy S. Pawate ◽  
Chang Sun ◽  
Frank Wan ◽  
Paige N. Sheraden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document