Faculty Opinions recommendation of Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo.

Author(s):  
Matteo Carandini
1997 ◽  
Vol 77 (4) ◽  
pp. 1697-1715 ◽  
Author(s):  
Edward A. Stern ◽  
Anthony E. Kincaid ◽  
Charles J. Wilson

Stern, Edward A., Anthony E. Kincaid, and Charles J. Wilson. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77: 1697–1715, 1997. We measured the timing of spontaneous membrane potential fluctuations and action potentials of medial and lateral agranular corticostriatal and striatal neurons with the use of in vivo intracellular recordings in urethan-anesthetized rats. All neurons showed spontaneous subthreshold membrane potential shifts from 7 to 32 mV in amplitude, fluctuating between a hyperpolarized down state and depolarized up state. Action potentials arose only during the up state. The membrane potential state transitions showed a weak periodicity with a peak frequency near 1 Hz. The peak of the frequency spectra was broad in all neurons, indicating that the membrane potential fluctuations were not dominated by a single periodic function. At frequencies >1 Hz, the log of magnitude decreased linearly with the log of frequency in all neurons. No serial dependence was found for up and down state durations, or for the time between successive up or down state transitions, showing that the up and down state transitions are not due to superimposition of noisy inputs onto a single frequency. Monte Carlo simulations of stochastic synaptic inputs to a uniform finite cylinder showed that the Fourier spectra obtained for corticostriatal and striatal neurons are inconsistent with a Poisson-like synaptic input, demonstrating that the up state is not due to an increase in the strength of an unpatterned synaptic input. Frequency components arising from state transitions were separated from those arising from the smaller membrane potential fluctuations within each state. A larger proportion of the total signal was represented by the fluctuations within states, especially in the up state, than was predicted by the simulations. The individual state spectra did not correspond to those of random synaptic inputs, but reproduced the spectra of the up and down state transitions. This suggests that the process causing the state transitions and the process responsible for synaptic input may be the same. A high-frequency periodic component in the up states was found in the majority of the corticostriatal cells in the sample. The average size of the component was not different between neurons injected with QX-314 and control neurons. The high-frequency component was not seen in any of our sample of striatal cells. Corticostriatal and striatal neurons' coefficients of variation of interspike intervals ranged from 1.0 to 1.9. When interspike intervals including a down state were subtracted from the calculation, the coefficient of variation ranged from 0.4 to 1.1, indicating that a substantial proportion of spike interval variance was due to the subthreshold membrane potential fluctuations.


1998 ◽  
Vol 80 (2) ◽  
pp. 504-519 ◽  
Author(s):  
Erik De Schutter

De Schutter, Erik. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J. Neurophysiol. 80: 504–519, 1998. The dendrites of most neurons express several types of voltage and Ca2+-gated channels. These ionic channels can be activated by subthreshold synaptic input, but the functional role of such activations in vivo is unclear. The interaction between dendritic channels and synaptic background input as it occurs in vivo was studied in a realistic computer model of a cerebellar Purkinje cell. It previously was shown using this model that dendritic Ca2+ channels amplify the somatic response to synchronous excitatory inputs. In this study, it is shown that dendritic ion channels also increased the somatic membrane potential fluctuations generated by the background input. This amplification caused a highly variable somatic excitatory postsynaptic potential (EPSP) in response to a synchronous excitatory input. The variability scaled with the size of the response in the model with excitable dendrite, resulting in an almost constant coefficient of variation, whereas in a passive model the membrane potential fluctuations simply added onto the EPSP. Although the EPSP amplitude in the active dendrite model was quite variable for different patterns of background input, it was insensitive to changes in the timing of the synchronous input by a few milliseconds. This effect was explained by slow changes in dendritic excitability. This excitability was determined by how the background input affected the dendritic membrane potentials in the preceding 10–20 ms, causing changes in activation of voltage and Ca2+-gated channels. The most important model variables determining the excitability at the time of a synchronous input were the Ca2+-activation of K+ channels and the inhibitory synaptic conductance, although many other model variables could be influential for particular background patterns. Experimental evidence for the amplification of postsynaptic variability by active dendrites is discussed. The amplification of the variability of EPSPs has important functional consequences in general and for cerebellar Purkinje cells specifically. Subthreshold, background input has a much larger effect on the responses to coherent input of neurons with active dendrites compared with passive dendrites because it can change the effective threshold for firing. This gives neurons with dendritic calcium channels an increased information processing capacity and provides the Purkinje cell with a gating function.


2019 ◽  
Vol 122 (6) ◽  
pp. 2294-2303 ◽  
Author(s):  
Marko Filipović ◽  
Maya Ketzef ◽  
Ramon Reig ◽  
Ad Aertsen ◽  
Gilad Silberberg ◽  
...  

Striatal projection neurons, the medium spiny neurons (MSNs), play a crucial role in various motor and cognitive functions. MSNs express either D1- or D2-type dopamine receptors and initiate the direct-pathway (dMSNs) or indirect pathways (iMSNs) of the basal ganglia, respectively. dMSNs have been shown to receive more inhibition than iMSNs from intrastriatal sources. Based on these findings, computational modeling of the striatal network has predicted that under healthy conditions dMSNs should receive more total input than iMSNs. To test this prediction, we analyzed in vivo whole cell recordings from dMSNs and iMSNs in healthy and dopamine-depleted (6OHDA) anaesthetized mice. By comparing their membrane potential fluctuations, we found that dMSNs exhibited considerably larger membrane potential fluctuations over a wide frequency range. Furthermore, by comparing the spike-triggered average membrane potentials, we found that dMSNs depolarized toward the spike threshold significantly faster than iMSNs did. Together, these findings (in particular the STA analysis) corroborate the theoretical prediction that direct-pathway MSNs receive stronger total input than indirect-pathway neurons. Finally, we found that dopamine-depleted mice exhibited no difference between the membrane potential fluctuations of dMSNs and iMSNs. These data provide new insights into the question of how the lack of dopamine may lead to behavioral deficits associated with Parkinson’s disease. NEW & NOTEWORTHY The direct and indirect pathways of the basal ganglia originate from the D1- and D2-type dopamine receptor expressing medium spiny neurons (dMSNs and iMSNs). Theoretical results have predicted that dMSNs should receive stronger synaptic input than iMSNs. Using in vivo intracellular membrane potential data, we provide evidence that dMSNs indeed receive stronger input than iMSNs, as has been predicted by the computational model.


Neuron ◽  
2007 ◽  
Vol 53 (3) ◽  
pp. 413-425 ◽  
Author(s):  
Alik Mokeichev ◽  
Michael Okun ◽  
Omri Barak ◽  
Yonatan Katz ◽  
Ohad Ben-Shahar ◽  
...  

2019 ◽  
Author(s):  
Marko Filipović ◽  
Maya Ketzef ◽  
Ramon Reig ◽  
Ad Aertsen ◽  
Gilad Silberberg ◽  
...  

AbstractStriatal projection neurons, the medium spiny neurons (MSNs), play a crucial role in various motor and cognitive functions. MSNs express either D1 or D2 type dopamine receptors and initiate the direct-pathway (dMSNs) or indirect pathways (iMSNs) of the basal ganglia, respectively. dMSNs have been shown to receive more inhibition than iMSNs from intrastriatal sources. Based on these findings, computational modelling of the striatal network has predicted that under healthy conditions dMSNs should receive more excitatory input than iMSNs. To test this prediction, we analyzed in vivo whole-cell recordings from dMSNs and iMSNs in healthy and dopamine-depleted (6OHDA) anaesthetized mice. By comparing their membrane potential fluctuations, we found that dMSNs exhibited considerably larger membrane potential fluctuations over a wide frequency range. Furthermore, by comparing the spike-triggered average membrane potentials, we found that dMSNs depolarized towards the spike threshold significantly faster than iMSNs did. Together, these finding corroborate the theoretical prediction that direct-pathway MSNs receive stronger input than indirect-pathway neurons. Finally, we found that dopamine-depleted mice exhibited no difference between the membrane potential fluctuations of dMSNs and iMSNs. These data provide new insights into the question how a lack of dopamine may lead to behavior deficits associated with Parkinson’s disease.Significance statementThe direct and indirect pathways of the basal ganglia originate from the D1 and D2 type dopamine receptor expressing medium spiny neurons (dMSNs and iMSNs), respectively. To understand the role of the striatum in brain function and dysfunction it is important to characterize the differences in synaptic inputs to the two MSN types. Theoretical results predicted that dMSNs should receive stronger excitatory input than iMSNs. Here, we studied membrane potential fluctuation statistics of MSNs recorded in vivo in anaesthetized mice and found that dMSNs, indeed, received stronger synaptic input than iMSNs. We corroborated this finding by spike-triggered membrane potential analysis, showing that dMSNs spiking required more synaptic input than iMSNs spiking did, as had been predicted by computational models.


1975 ◽  
Vol 191 (1105) ◽  
pp. 561-565 ◽  

Glutamate-induced potential changes have been recorded with intracellular electrodes in nerve cells of the squid. The responses are accompanied by small voltage fluctuations which resemble postsynaptic ‘membrane noise’ observed at neuromuscular junctions. Certain limitations are discussed in extending the noise analysis to neurons with multiple synaptic inputs.


1987 ◽  
Vol 103 (3) ◽  
pp. 283-286
Author(s):  
S. I. Zakharov ◽  
K. Yu. Bogdanov ◽  
A. V. Zaitsev ◽  
L. V. Rozenshtraukh

Sign in / Sign up

Export Citation Format

Share Document