Faculty Opinions recommendation of Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines.

Author(s):  
Yadin Dudai
Neuron ◽  
2007 ◽  
Vol 56 (4) ◽  
pp. 640-656 ◽  
Author(s):  
Zhong Xie ◽  
Deepak P. Srivastava ◽  
Huzefa Photowala ◽  
Li Kai ◽  
Michael E. Cahill ◽  
...  

Author(s):  
Ivar S. Stein ◽  
Travis C. Hill ◽  
Won Chan Oh ◽  
Laxmi K. Parajuli ◽  
Karen Zito

2006 ◽  
Vol 66 (6) ◽  
pp. 564-577 ◽  
Author(s):  
Janis E. Lochner ◽  
Leah S. Honigman ◽  
Wilmon F. Grant ◽  
Sarah K. Gessford ◽  
Alexis B. Hansen ◽  
...  

2008 ◽  
Vol 28 (49) ◽  
pp. 13094-13105 ◽  
Author(s):  
X. Hu ◽  
C. Viesselmann ◽  
S. Nam ◽  
E. Merriam ◽  
E. W. Dent

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128241 ◽  
Author(s):  
Jian-Hua Chen ◽  
Yves Kellner ◽  
Marta Zagrebelsky ◽  
Matthias Grunwald ◽  
Martin Korte ◽  
...  

2018 ◽  
Author(s):  
Erica C. Dresselhaus ◽  
Matthew C.H. Boersma ◽  
Mollie K. Meffert

ABSTRACTLong-term forms of brain plasticity share a requirement for changes in gene expression induced by neuronal activity. Mechanisms that determine how the distinct and overlapping functions of multiple activity-responsive transcription factors, including nuclear factor kappa B (NF-κB), give rise to stimulus-appropriate neuronal responses remain unclear. We report that the p65/RelA subunit of NF-κB confers subcellular enrichment at neuronal dendritic spines and engineer a p65 mutant that lacks spine-enrichment (ΔSEp65) but retains inherent transcriptional activity equivalent to wild-type p65. Wild-type p65 or ΔSEp65 both rescue NF-κB-dependent gene expression in p65-deficient murine hippocampal neurons responding to diffuse (PMA/ionomycin) stimulation. In contrast, neurons lacking spine-enriched NF-κB are selectively impaired in NF-κB-dependent gene expression induced by elevated excitatory synaptic stimulation (bicuculline or glycine). We used the setting of excitatory synaptic activity during development that produces NF-κB-dependent growth of dendritic spines to test physiological function of spine-enriched NF-κB in an activity-dependent response. Expression of wild-type p65, but not ΔSEp65, is capable of rescuing spine density to normal levels in p65-deficient pyramidal neurons. Collectively, these data reveal that spatial localization in dendritic spines contributes unique capacities to the NF-κB transcription factor in synaptic activity-dependent responses.SIGNIFICANCE STATEMENTExtensive research has established a model in which the regulation of neuronal gene expression enables enduring forms of plasticity and learning. However, mechanisms imparting stimulus-specificity to gene regulation, insuring biologically appropriate responses, remain incompletely understood. NF-κB is a potent transcription factor with evolutionarily-conserved functions in learning and the growth of excitatory synaptic contacts. Neuronal NF-κB is localized in both synapse and somatic compartments, but whether the synaptic pool of NF-κB has discrete functions is unknown. This study reveals that NF-κB enriched in dendritic spines (the postsynaptic sites of excitatory contacts) is selectively required for NF-κB activation by synaptic stimulation and normal dendritic spine development. These results support spatial localization at synapses as a key variable mediating selective stimulus-response coupling.


2018 ◽  
Author(s):  
Gaurang Mahajan ◽  
Suhita Nadkarni

ABSTRACTLong-term plasticity mediated by NMDA receptors supports input-specific, Hebbian forms of learning at excitatory CA3-CA1 connections in the hippocampus. An additional layer of stabilizing mechanisms that act globally as well as locally over multiple time scales may be in place to ensure that plasticity occurs in a constrained manner. Here, we investigate the potential role of calcium (Ca2+) stores associated with the endoplasmic reticulum (ER) in the local regulation of plasticity dynamics at individual CA1 synapses. Our study is spurred by (1) the curious observation that ER is sparsely distributed in dendritic spines, but over-represented in large spines that are likely to have undergone activity-dependent strengthening, and (2) evidence suggesting that ER motility within synapses can be rapid, and accompany activity-regulated spine remodeling. Based on a physiologically realistic computational model for ER-bearing CA1 spines, we characterize the contribution of IP3-sensitive Ca2+ stores to spine Ca2+ dynamics during activity patterns mimicking the induction of long-term potentiation (LTP) and depression (LTD). Our results suggest graded modulation of the NMDA receptor-dependent plasticity profile by ER, which selectively enhances LTD induction. We propose that spine ER can locally tune Ca2+-based plasticity on an as-needed basis, providing a braking mechanism to mitigate runaway strengthening at potentiated synapses. Our model suggests that the presence of ER in the CA1 spine may promote re-use of synapses with saturated strengths.


Cell ◽  
2010 ◽  
Vol 141 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Matthew J. Kennedy ◽  
Ian G. Davison ◽  
Camenzind G. Robinson ◽  
Michael D. Ehlers

Sign in / Sign up

Export Citation Format

Share Document