Faculty Opinions recommendation of Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats.

Author(s):  
Nanna Finnerup
Pain ◽  
2008 ◽  
Vol 135 (3) ◽  
pp. 300-310 ◽  
Author(s):  
Doris Schoffnegger ◽  
Ruth Ruscheweyh ◽  
Jürgen Sandkühler

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Qi An ◽  
Chenyan Sun ◽  
Ruidi Li ◽  
Shuhui Chen ◽  
Xinpei Gu ◽  
...  

Abstract Background Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. Results Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. Conclusion Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.


2021 ◽  
pp. 135965
Author(s):  
Zhou Wu ◽  
Xie Zhiping ◽  
Li Chengcai ◽  
Zelong Xing ◽  
Xie Shenke ◽  
...  

Neuroscience ◽  
2020 ◽  
Vol 429 ◽  
pp. 203-212 ◽  
Author(s):  
Xing-Lian Duan ◽  
Zhen Guo ◽  
Yong-Tao He ◽  
Yin-Xia Li ◽  
Yan-Ni Liu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenyu Wu ◽  
Xiaofang Lu ◽  
Shengsheng Zhang ◽  
Chunyang Zhu

The present study investigated the effect of Chinese medicine Sini-San (SNS) on visceral hypersensitivity in a rat model of functional dyspepsia (FD), and it explored related underlying mechanisms. The rat model of FD was developed by combining neonatal iodoacetamide (IA) treatment and adult tail-clamping. After SNS treatment, the behavior and electromyographic testing were performed to evaluate the visceromotor responses of rats to gastric distention. Immunofluorescence was used to detect the distribution of iNOS-positive cells in the spinal dorsal horn, while the real-time quantitative PCR and western blot were used for detection of the gene expression of c-fos, iNOS, and GABAb and protein levels of iNOS and GABAb in the spinal dorsal horn, respectively. The protein concentration of cGMP and PKG proteins in the spinal dorsal horn were quantified by enzyme-linked immunosorbent assay. In this study, SNS treatment significantly reduced the behavioral score and electromyographic response to graded intragastric distension pressure. The middle-dose of SNS treatment significantly reduced the distribution of iNOS-positive cells in the spinal dorsal horn of FD model rats. The gene expression of c-fos, iNOS, and GABAb and the protein contents of iNOS, GABAb, cGMP, and PKG in the spinal dorsal horn of FD model rats were restored to a normal level by middle-dose of SNS treatment. Our results suggest that Sini-San may alleviate the visceral hypersensitivity in FD model rats via regulation of the NO/cGMP/PKG pathway in the spinal dorsal horn.


Sign in / Sign up

Export Citation Format

Share Document