Faculty Opinions recommendation of Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition.

Author(s):  
Michele Pagano
Cancer Cell ◽  
2008 ◽  
Vol 14 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Irina Nickeleit ◽  
Steffen Zender ◽  
Florenz Sasse ◽  
Robert Geffers ◽  
Gudrun Brandes ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2656-2656
Author(s):  
Bulent Ozpolat ◽  
Ugur Akar ◽  
Nancy H. Colburn ◽  
Gabriel Lopez-Berestein

Abstract Programmed cell death 4 (PDCD4) is a recently identied novel tumor suppressor protein that inhibits cap-dependent mRNA translation. PDCD4 inhibits tumor promoter incuced carcinogenesis and transformation by suppressing the helicase activity of eIF4A, leading to translational inhibition. Recently we found that PDCD4 is required for all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of acute promyelocytic leukemia (APL) cells (Ozpolat&Akar et al, Mol Cancer Res, in press), type of acute myeloid leukemia characterized by a t(15;17) and a differentiation block. Here we investigated the downstream mediators or targets of PDCD4 in leukemia cell differentiation. ATRA is currently used as a first line standard treatment in APL. Recently, we reported that ATRA induces translational suppression through multiple posttranscriptional mechanisms that involve suppression of translation initiation, a rate limiting step of protein synthesis (Harris&Ozpolat et al, Blood, 104 (5) 2004). We found that ATRA treatment induced PDCD4 expression in NB4 APL, HL60 AML, primary APL patient leukemia cells and normal human CD34+ bone marrow progenitors cells during granulocytic differentiation. However, ATRA/maturation resistant NB4.R1 and HL60R cells failed to express and translocate PDCD4 into nucleus after ATRA treatment. To identify downstream targets of PDCD4 we knock downed PDCD4 expression by siRNA and examined changes in the expression of target proteins that are known to be regulated by ATRA by Western blot analysis in NB4 cells. We found that PDCD4 represses c-myc, and WT1 expression however, it is required for the expression of DAP5 (death associated protein 5), and cyclin dependent kinase inhibitor p27KIP1, and but not c-jun, p21Cip1, and tissue transglutaminase (TG2). Inhibition of PDCD4 by siRNA resulted in upregulation of phospho-P70S6K, suggesting that PDCD4 inhibits activity of PI3K/Akt pathway. RT-PCR analysis revealed that mRNA of these proteins did not change suggesting that PDCD4 tumor suppressor protein regulates expression of these important cellular proteins at translational level and suppresses PI3K/Akt pathway. Furthermore we rapamycin, a specific mTOR inhibitor currently in clinical trials in AML, induced a marked expression of PDCD4, which regulates c-myc and p27 Kip1, revealing a novel mechanism of action of rapamycin, providing new rationale for targeting translational pathways as a therapeutic intervention in the treatment of AML. Overall, data suggest that PDCD4 regulates expression of critical cellular proteins involved in differentiation of leukemia cells and PDCD4 mediated translational control may be an important regulatory mechanism for regulation of gene expression.


2007 ◽  
Vol 16 (13) ◽  
pp. 1541-1556 ◽  
Author(s):  
Margit Rosner ◽  
Angelika Freilinger ◽  
Michaela Hanneder ◽  
Naoya Fujita ◽  
Gert Lubec ◽  
...  

2021 ◽  
Author(s):  
Owen Burbidge ◽  
Martyna W Pastok ◽  
Samantha L Hodder ◽  
Grasilda Zenkeviciute ◽  
Martin EM Noble ◽  
...  

We describe the generation and characterization of camelid single-domain antibodies (nanobodies) raised against tumor suppressor protein p16INK4a (p16). p16 plays a critical role in the cell cycle by inhibiting cyclin-dependent kinases CDK4 and CDK6, and it is inactivated in sporadic and familial cancers. The majority of the p16 missense mutations cause loss of function by destabilizing the protein structure. We show that the nanobodies bind p16 with nanomolar affinities and restore the stability of a range of different cancer-associated p16 mutations located at sites throughout the protein. The nanobodies also bind and stabilize p16 in a cellular setting. The crystal structure of a nanobody-p16 complex reveals that the nanobody binds to the opposite face of p16 to the CDK-binding interface permitting formation of a ternary complex. These findings indicate that nanobodies could be used as pharmacological chaperones to determine the consequences of restoring the function of p16 in the cell.


Sign in / Sign up

Export Citation Format

Share Document