Faculty Opinions recommendation of A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons.

Author(s):  
Jeffrey Macklis ◽  
Suzanne Tharin
2011 ◽  
Vol 31 (11) ◽  
pp. 4166-4177 ◽  
Author(s):  
P. H. Ozdinler ◽  
S. Benn ◽  
T. H. Yamamoto ◽  
M. Guzel ◽  
R. H. Brown ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 754
Author(s):  
Tunch Ozyurt ◽  
Mukesh Gautam

Corticospinal motor neurons (CSMN) are an indispensable neuron population for the motor neuron circuitry. They are excitatory projection neurons, which collect information from different regions of the brain and transmit it to spinal cord targets, initiating and controlling motor function. CSMN degeneration is pronounced cellular event in motor neurons diseases, such as amyotrophic lateral sclerosis (ALS). Genetic mutations contribute to only about ten percent of ALS. Thus understanding the involvement of other factors, such as epigenetic controls, is immensely valuable. Here, we investigated epigenomic signature of CSMN that become diseased due to misfolded SOD1 toxicity and TDP-43 pathology, by performing quantitative analysis of 5-methylcytosine (5mC) and 5-hydroxymethycytosine (5hmC) expression profiles during end-stage of the disease in hSOD1G93A, and prpTDP-43A315T mice. Our analysis revealed that expression of 5mC was specifically reduced in CSMN of both hSOD1G93A and prpTDP-43A315T mice. However, 5hmC expression was increased in the CSMN that becomes diseased due to misfolded SOD1 and decreased in CSMN that degenerates due to TDP-43 pathology. These results suggest the presence of a distinct difference between different underlying causes. These differential epigenetic events might modulate the expression profiles of select genes, and ultimately contribute to the different paths that lead to CSMN vulnerability in ALS.


2021 ◽  
Vol 11 (2) ◽  
pp. 160
Author(s):  
Mor R. Alkaslasi ◽  
Noell E. Cho ◽  
Navpreet K. Dhillon ◽  
Oksana Shelest ◽  
Patricia S. Haro-Lopez ◽  
...  

Traumatic brain injury (TBI) is a well-established risk factor for several neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease, however, a link between TBI and amyotrophic lateral sclerosis (ALS) has not been clearly elucidated. Using the SOD1G93A rat model known to recapitulate the human ALS condition, we found that exposure to mild, repetitive TBI lead ALS rats to experience earlier disease onset and shortened survival relative to their sham counterparts. Importantly, increased severity of early injury symptoms prior to the onset of ALS disease symptoms was linked to poor health of corticospinal motor neurons and predicted worsened outcome later in life. Whereas ALS rats with only mild behavioral injury deficits exhibited no observable changes in corticospinal motor neuron health and did not present with early onset or shortened survival, those with more severe injury-related deficits exhibited alterations in corticospinal motor neuron health and presented with significantly earlier onset and shortened lifespan. While these studies do not imply that TBI causes ALS, we provide experimental evidence that head injury is a risk factor for earlier disease onset in a genetically predisposed ALS population and is associated with poor health of corticospinal motor neurons.


2015 ◽  
Vol 25 (11) ◽  
pp. 4259-4272 ◽  
Author(s):  
Javier H. Jara ◽  
Barış Genç ◽  
Gregory A. Cox ◽  
Martha C. Bohn ◽  
Raymond P. Roos ◽  
...  

2017 ◽  
Vol 01 (03) ◽  
pp. E136-E141 ◽  
Author(s):  
H. Braak ◽  
M. Neumann ◽  
A. Ludolph ◽  
K. Del Tredici

AbstractThe pathological process underlying sporadic amyotrophic lateral sclerosis (sALS) that is associated with the formation of cytoplasmic inclusions of a nuclear protein (TDP-43) is confined to only a few types of long-axoned projection neurons. The giant Betz pyramidal cells of the primary motor neocortex as well as large α-motor neurons of the lower brainstem and spinal cord become involved early. In the human brain, these 2 neuronal types are to a large extent interconnected by monosynaptic axonal projections. The cell nuclei of affected neurons gradually forfeit their normal expression of the protein TDP-43. In α-motor neurons, this nuclear loss is followed by the formation of insoluble TDP-43-immunopositive inclusions in the cytoplasm, whereas in Betz cells the loss of nuclear expression remains for an unknown period of time unaccompanied by somatodendritic and/or axoplasmic aggregations. It is possible that in cortical pyramidal cells (Betz cells) the nuclear clearing initially leads to the formation of an abnormal but still soluble cytoplasmic TDP-43 which may enter the axoplasm and, following transmission via direct synaptic contacts, induces anew TDP-43 dysregulation and aggregation in recipient neurons. The trajectory of the spreading pattern that consecutively develops during the course of sALS is consistent with the dissemination from chiefly cortical projection neurons via axonal transport through direct synaptic contacts leading to the secondary induction of TDP-43-containing inclusions within recipient nerve cells in involved subcortical regions.


2021 ◽  
Author(s):  
Benjamin M. Zemel ◽  
Alexander A. Nevue ◽  
Andre Dagostin ◽  
Peter V. Lovell ◽  
Claudio V. Mello ◽  
...  

AbstractThe underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display: 1) robust high-frequency firing, 2) ultra-short half-width spike waveforms, 3) superfast Na+ current inactivation kinetics and 4) large resurgent Na+ currents (INaR). These spiking properties closely resemble those of specialized pyramidal neurons in mammalian motor cortex and are well suited for precise temporal coding. They emerge during the critical period for vocal learning in males but not females, coinciding with a complete switch of modulatory Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4’s C-terminal peptide into juvenile RA neurons provide evidence that this subunit, and its associated INaR, promote neuronal excitability. We propose that Navβ4 underpins INaR that facilitates precise, prolonged, and reliable high-frequency firing in upper motor neurons.


Sign in / Sign up

Export Citation Format

Share Document