epigenetic events
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 62)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 752
Author(s):  
Jahanzaib Irfan ◽  
Muhammad Rizki Febrianto ◽  
Anju Sharma ◽  
Thomas Rose ◽  
Yasamin Mahmudzade ◽  
...  

While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Sutapa Ray ◽  
Nagendra K. Chaturvedi ◽  
Kishor K. Bhakat ◽  
Angie Rizzino ◽  
Sidharth Mahapatra

Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2439
Author(s):  
Anna Zioutopoulou ◽  
Eirini Patitaki ◽  
Tianyuan Xu ◽  
Eirini Kaiserli

Integration of temperature cues is crucial for plant survival and adaptation. Global warming is a prevalent issue, especially in modern agriculture, since the global rise in average temperature is expected to impact crop productivity worldwide. Hence, better understanding of the mechanisms by which plants respond to warmer temperatures is very important. This review focuses on the epigenetic mechanisms implicated in plant responses to high temperature and distinguishes the different epigenetic events that occur at warmer average temperatures, leading to thermomorphogenic responses, or subjected to extreme warm temperatures, leading to heat stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mankgopo Magdeline Kgatle ◽  
Ismaheel Opeyemi Lawal ◽  
Gabriel Mashabela ◽  
Tebatso Moshoeu Gillian Boshomane ◽  
Palesa Caroline Koatale ◽  
...  

The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.


2021 ◽  
Vol 22 (19) ◽  
pp. 10592
Author(s):  
Pai-Chi Teng ◽  
Yanwen Liang ◽  
Aliaksandr A. Yarmishyn ◽  
Yu-Jer Hsiao ◽  
Ting-Yi Lin ◽  
...  

Lung cancer is the leading cause of cancer-related mortality worldwide, and its tumorigenesis involves the accumulation of genetic and epigenetic events in the respiratory epithelium. Epigenetic modifications, such as DNA methylation, RNA modification, and histone modifications, have been widely reported to play an important role in lung cancer development and in other pulmonary diseases. Whereas the functionality of DNA and chromatin modifications referred to as epigenetics is widely characterized, various modifications of RNA nucleotides have recently come into prominence as functionally important. N6-methyladosine (m6A) is the most prevalent internal modification in mRNAs, and its machinery of writers, erasers, and readers is well-characterized. However, several other nucleotide modifications of mRNAs and various noncoding RNAs have also been shown to play an important role in the regulation of biological processes and pathology. Such epitranscriptomic modifications play an important role in regulating various aspects of RNA metabolism, including transcription, translation, splicing, and stability. The dysregulation of epitranscriptomic machinery has been implicated in the pathological processes associated with carcinogenesis including uncontrolled cell proliferation, migration, invasion, and epithelial-mesenchymal transition. In recent years, with the advancement of RNA sequencing technology, high-resolution maps of different modifications in various tissues, organs, or disease models are being constantly reported at a dramatic speed. This facilitates further understanding of the relationship between disease development and epitranscriptomics, shedding light on new therapeutic possibilities. In this review, we summarize the basic information on RNA modifications, including m6A, m1A, m5C, m7G, pseudouridine, and A-to-I editing. We then demonstrate their relation to different kinds of lung diseases, especially lung cancer. By comparing the different roles RNA modifications play in the development processes of different diseases, this review may provide some new insights and offer a better understanding of RNA epigenetics and its involvement in pulmonary diseases.


2021 ◽  
Vol 22 (18) ◽  
pp. 9716
Author(s):  
Ximo García-Domínguez ◽  
Gianfranco Diretto ◽  
David S. Peñaranda ◽  
Sarah Frusciante ◽  
Victor García-Carpintero ◽  
...  

Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.


2021 ◽  
Vol 22 (18) ◽  
pp. 9667
Author(s):  
Geoffrey Brown

In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.


2021 ◽  
Vol 22 (16) ◽  
pp. 8765
Author(s):  
Ayako Fujimine-Sato ◽  
Takashi Kuno ◽  
Keiko Higashi ◽  
Atsushi Sugawara ◽  
Hiroaki Hiraga ◽  
...  

In regular IVF, a portion of oocytes exhibit abnormal numbers of pronuclei (PN) that is considered as abnormal fertilization, and they are routinely discarded. However, it is known that abnormal ploidy still does not completely abandon embryo development and implantation. To explore the potential of cytoplasm from those abnormally fertilized oocytes, we developed a novel technique for the transfer of large cytoplasm between pronuclear-stage mouse embryos, and assessed its impact. A large volume of cytoplast could be efficiently transferred in the PN stage using a novel two-step method of pronuclear-stage cytoplasmic transfer (PNCT). PNCT revealed the difference in the cytoplasmic function among abnormally fertilized embryos where the cytoplasm of 3PN was developmentally more competent than 1PN, and the supplementing of fresh 3PN cytoplasm restored the impaired developmental potential of postovulatory “aged” oocytes. PNCT-derived embryos harbored significantly higher mitochondrial DNA copies, ATP content, oxygen consumption rate, and total cells. The difference in cytoplasmic function between 3PN and 1PN mouse oocytes probably attributed to the proper activation via sperm and may impact subsequent epigenetic events. These results imply that PNCT may serve as a potential alternative treatment to whole egg donation for patients with age-related recurrent IVF failure.


Author(s):  
Flodrova Pavla ◽  
Luzna Petra ◽  
Weiser-Drozdkova Denisa ◽  
Smesny Trtkova Katerina

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arno Meiler ◽  
Fabio Marchiano ◽  
Margaux Haering ◽  
Manuela Weitkunat ◽  
Frank Schnorrer ◽  
...  

AbstractGene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into different gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell-type specific gene expression. We have developed the AnnoMiner web-server, an innovative and flexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user-provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two different transcriptional regulators together with gene features. Third, AnnoMiner offers to explore the transcriptional deregulation of genes nearby, or within a specified genomic region surrounding a user-provided peak. AnnoMiner’s fourth function performs transcription factor or histone modification enrichment analysis for user-provided gene lists by utilizing hundreds of public, high-quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied process without the strict need for chromatin data from the same process. We compared AnnoMiner to existing tools and experimentally validated several transcriptional regulators predicted by AnnoMiner to indeed contribute to muscle morphogenesis in Drosophila. AnnoMiner is freely available at http://chimborazo.ibdm.univ-mrs.fr/AnnoMiner/.


Sign in / Sign up

Export Citation Format

Share Document