scholarly journals Does Sporadic Amyotrophic Lateral Sclerosis Spread via Axonal Connectivities?

2017 ◽  
Vol 01 (03) ◽  
pp. E136-E141 ◽  
Author(s):  
H. Braak ◽  
M. Neumann ◽  
A. Ludolph ◽  
K. Del Tredici

AbstractThe pathological process underlying sporadic amyotrophic lateral sclerosis (sALS) that is associated with the formation of cytoplasmic inclusions of a nuclear protein (TDP-43) is confined to only a few types of long-axoned projection neurons. The giant Betz pyramidal cells of the primary motor neocortex as well as large α-motor neurons of the lower brainstem and spinal cord become involved early. In the human brain, these 2 neuronal types are to a large extent interconnected by monosynaptic axonal projections. The cell nuclei of affected neurons gradually forfeit their normal expression of the protein TDP-43. In α-motor neurons, this nuclear loss is followed by the formation of insoluble TDP-43-immunopositive inclusions in the cytoplasm, whereas in Betz cells the loss of nuclear expression remains for an unknown period of time unaccompanied by somatodendritic and/or axoplasmic aggregations. It is possible that in cortical pyramidal cells (Betz cells) the nuclear clearing initially leads to the formation of an abnormal but still soluble cytoplasmic TDP-43 which may enter the axoplasm and, following transmission via direct synaptic contacts, induces anew TDP-43 dysregulation and aggregation in recipient neurons. The trajectory of the spreading pattern that consecutively develops during the course of sALS is consistent with the dissemination from chiefly cortical projection neurons via axonal transport through direct synaptic contacts leading to the secondary induction of TDP-43-containing inclusions within recipient nerve cells in involved subcortical regions.

2015 ◽  
Vol 35 (14) ◽  
pp. 2385-2399 ◽  
Author(s):  
Nadine Bakkar ◽  
Arianna Kousari ◽  
Tina Kovalik ◽  
Yang Li ◽  
Robert Bowser

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulatedin vitroin motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease.


2019 ◽  
Vol 8 (5) ◽  
pp. 729 ◽  
Author(s):  
Matteo Bordoni ◽  
Orietta Pansarasa ◽  
Michela Dell’Orco ◽  
Valeria Crippa ◽  
Stella Gagliardi ◽  
...  

We already demonstrated that in peripheral blood mononuclear cells (PBMCs) of sporadic amyotrophic lateral sclerosis (sALS) patients, superoxide dismutase 1 (SOD1) was present in an aggregated form in the cytoplasmic compartment. Here, we investigated the possible effect of soluble SOD1 decrease and its consequent aggregation. We found an increase in DNA damage in patients PBMCs characterized by a high level of aggregated SOD1, while we found no DNA damage in PBMCs with normal soluble SOD1. We found an activation of ataxia-telangiectasia-mutated (ATM)/Chk2 and ATM and Rad3-related (ATR)/Chk1 DNA damage response pathways, which lead to phosphorylation of SOD1. Moreover, data showed that phosphorylation allows SOD1 to shift from the cytoplasm to the nucleus, protecting DNA from oxidative damage. Such pathway was finally confirmed in our cellular model. Our data lead us to suppose that in a sub-group of patients this physiologic pathway is non-functional, leading to an accumulation of DNA damage that causes the death of particularly susceptible cells, like motor neurons. In conclusion, during oxidative stress SOD1 is phosphorylated by Chk2 leading to its translocation in the nuclear compartment, in which SOD1 protects DNA from oxidative damage. This pathway, inefficient in sALS patients, could represent an innovative therapeutic target.


2019 ◽  
Vol 78 (10) ◽  
pp. 910-921 ◽  
Author(s):  
Fumiaki Mori ◽  
Yasuo Miki ◽  
Tomoya Kon ◽  
Kunikazu Tanji ◽  
Koichi Wakabayashi

Abstract Bunina bodies (BBs) coexisting with TDP-43-immunoreactive (TDP-43-IR) skein-like inclusions (SIs) and round inclusions (RIs) in lower motor neurons are a frequent feature of sporadic amyotrophic lateral sclerosis (sALS). Since previous studies have shown that BBs and TDP-43-IR inclusions are often detected in association with autophagy-related structures (autophagosomes and autolysosomes), we examined the anterior horn cells (AHCs) of the spinal cord from 15 patients with sALS and 6 control subjects, using antibodies against autophagy-related proteins (LC3, cathepsin B, and cathepsin D). Among AHCs with SIs, 43.9% contained BBs, whereas 51.7% of AHCs with RIs did so. The cytoplasm of AHCs showed diffuse immunoreactivity for LC3, cathepsin B and cathepsin D in both sALS and controls. Ultrastructurally, SIs and mature BBs contained autophagosomes and autolysosomes. Mature BBs were localized in the vicinity of SIs. RIs also contained autophagosomes, autolysosomes, and early-stage BBs. These findings suggest that autophagy is a common degradation pathway for BBs and TDP-43-IR inclusions, which may explain their frequent coexistence.


Sign in / Sign up

Export Citation Format

Share Document