Faculty Opinions recommendation of Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression.

Author(s):  
Sharma Prabhakar
Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2561-2568 ◽  
Author(s):  
Guido Lastra ◽  
Javad Habibi ◽  
Adam T. Whaley-Connell ◽  
Camila Manrique ◽  
Melvin R. Hayden ◽  
...  

Renin is the rate-limiting enzyme in renin-angiotensin system (RAS) activation. We sought to determine the impact of renin inhibition on whole-body insulin sensitivity and skeletal muscle RAS, oxidative stress, insulin signaling, and glucose transport in the transgenic TG(mRen2)27 rat (Ren2), which manifests increased tissue RAS activity, elevated serum aldosterone, hypertension, and insulin resistance. Young (aged 6–9 wk) Ren2 and age-matched Sprague Dawley control rats were treated with aliskiren [50 mg/kg · d, ip] or placebo for 21 d and administered an ip glucose tolerance test. Insulin metabolic signaling and 2-deoxyglucose uptake in soleus muscle were examined in relation to tissue renin-angiotensin-aldosterone system [angiotensin (Ang) II, mineralocorticoid receptor (MR), and Ang type I receptor (AT1R)] and measures of oxidative stress as well as structural changes evaluated by light and transmission electron microscopy. Ren2 rats demonstrated systemic insulin resistance with decreased skeletal muscle insulin metabolic signaling and glucose uptake. This was associated with increased Ang II, MR, AT1R, oxidative stress, and reduced tyrosine insulin receptor substrate-1 phosphorylation, protein kinase B/(Akt) phosphorylation and glucose transporter-4 immunostaining. The Ren2 also demonstrated perivascular fibrosis and mitochondrial remodeling. Renin inhibition improved systemic insulin sensitivity, insulin metabolic signaling, and glucose transport along with normalization of Ang II, AT1R, and MR levels, oxidative stress markers, fibrosis, and mitochondrial structural abnormalities. Our data suggest that renin inhibition improves systemic insulin sensitivity, skeletal muscle insulin metabolic signaling, and glucose transport in Ren2 rats. This is associated with reductions in skeletal muscle tissue Ang II, AT1R, and MR expression; oxidative stress; fibrosis; and mitochondrial abnormalities.


2018 ◽  
Vol 74 (3) ◽  
pp. 455-466 ◽  
Author(s):  
Yupaporn Rattanavichit ◽  
Jariya Buniam ◽  
Juthamard Surapongchai ◽  
Vitoon Saengsirisuwan

2012 ◽  
Vol 302 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
Elizabeth M. Marchionne ◽  
Maggie K. Diamond-Stanic ◽  
Mujalin Prasonnarong ◽  
Erik J. Henriksen

We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker ( fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser473 phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy of targeting the RAS to improve both blood pressure regulation and insulin action in conditions of insulin resistance.


2002 ◽  
Vol 93 (2) ◽  
pp. 805-812 ◽  
Author(s):  
Tyson R. Kinnick ◽  
Erik B. Youngblood ◽  
Matthew P. O'Keefe ◽  
Vitoon Saengsirisuwan ◽  
Mary K. Teachey ◽  
...  

Hypertension is often accompanied by insulin resistance of skeletal muscle glucose transport. The male heterozygous TG(mREN2)27 rat, which harbors a mouse transgene for renin, displays local elevations in the renin-angiotensin system and exhibits markedly elevated systolic blood pressure (SBP). The present study was undertaken to characterize insulin-stimulated skeletal muscle glucose transport in male heterozygous TG(mREN2)27 rats and to evaluate the effect of voluntary exercise training on SBP and skeletal muscle glucose transport. Compared with normotensive Sprague-Dawley rats, TG(mREN2)27 rats displayed a 53% elevation ( P < 0.05) in SBP, a twofold increase in plasma free fatty acid levels, and an exaggerated insulin response during an oral glucose tolerance test. Moreover, insulin-mediated glucose transport (2-deoxyglucose uptake) in isolated epitrochlearis and soleus muscles of TG(mREN2)27 animals was 33 and 43% less, respectively, than in Sprague-Dawley controls. TG(mREN2)27 rats ran voluntarily for 6 wk and achieved daily running distances of 6–7 km over the final 3 wk. Training caused a 36% increase in peak aerobic capacity and a 16% reduction in resting SBP. Fasting plasma insulin (21%) and free fatty acid (34%) levels were reduced in the trained TG(mREN2)27 rats. Whole body glucose tolerance was improved in the trained TG(mREN2)27 rats and was associated with increases of 39 and 50% in insulin-mediated glucose transport in epitrochlearis and soleus muscles, respectively. Whole muscle GLUT-4 protein was increased in the soleus (23%), but not in the epitrochlearis, of trained TG(mREN2)27 rats. These data indicate that the male heterozygous TG(mREN2)27 rat is a model of both hypertension and insulin resistance. Importantly, both of these defects can be beneficially modified by voluntary exercise training.


Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1761-1767 ◽  
Author(s):  
D. H. Han ◽  
P. A. Hansen ◽  
H. H. Host ◽  
J. O. Holloszy

1995 ◽  
Vol 270 (4) ◽  
pp. 1679-1684
Author(s):  
Polly A. Hansen ◽  
Eric A. Gulve ◽  
Bess Adkins Marshall ◽  
Jiaping Gao ◽  
Jeffrey E. Pessin ◽  
...  

2003 ◽  
Vol 285 (1) ◽  
pp. E98-E105 ◽  
Author(s):  
Erik J. Henriksen ◽  
Mary K. Teachey ◽  
Zachary C. Taylor ◽  
Stephan Jacob ◽  
Arne Ptock ◽  
...  

The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9, trans-11-CLA (c9,t11-CLA) and trans-10, cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker ( fa/ fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced ( P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides ( r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.


2004 ◽  
Vol 286 (3) ◽  
pp. E347-E353 ◽  
Author(s):  
Dong-Ho Han ◽  
Lorraine A. Nolte ◽  
Jeong-Sun Ju ◽  
Trey Coleman ◽  
John O. Holloszy ◽  
...  

To address the potential role of lipotoxicity and mitochondrial function in insulin resistance, we studied mice with high-level expression of uncoupling protein-1 in skeletal muscle (UCP-H mice). Body weight, body length, and bone mineral density were decreased in UCP-H mice compared with wild-type littermates. Forelimb grip strength and muscle mass were strikingly decreased, whereas muscle triglyceride content was increased fivefold in UCP-H mice. Electron microscopy demonstrated lipid accumulation and large mitochondria with abnormal architecture in UCP-H skeletal muscle. ATP content and key mitochondrial proteins were decreased in UCP-H muscle. Despite mitochondrial dysfunction and increased intramyocellular fat, fasting serum glucose was 22% lower and insulin-stimulated glucose transport 80% higher in UCP-H animals. These beneficial effects on glucose metabolism were associated with increased AMP kinase and hexokinase activities, as well as elevated levels of GLUT4 and myocyte enhancer factor-2 proteins A and D in skeletal muscle. These results suggest that UCP-H mice have a mitochondrial myopathy due to depleted energy stores sufficient to compromise growth and impair muscle function. Enhanced skeletal muscle glucose transport in this setting suggests that excess intramyocellular lipid and mitochondrial dysfunction are not sufficient to cause insulin resistance in mice.


1989 ◽  
Vol 66 (6) ◽  
pp. 2635-2641 ◽  
Author(s):  
J. L. Ivy ◽  
J. T. Brozinick ◽  
C. E. Torgan ◽  
G. M. Kastello

Exercise training has been found to reduce the muscle insulin resistance of the obese Zucker rat (fa/fa). The purpose of the present study was to determine whether this reduction in muscle insulin resistance was associated with an improvement in the glucose transport process and if it was fiber-type specific. Rats were randomly assigned to a sedentary or training group. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 days/wk, for 6–8 wk. The rate of muscle glucose transport was assessed in the absence of insulin and in the presence of a physiological (0.15 mU/ml), a submaximal (1.50 mU/ml), and a maximal (15.0 mU/ml) insulin concentration by determining the rate of 3-O-methyl-D-glucose (3-OMG) accumulation during hindlimb perfusion. The average 3-OMG transport rate of the red gastrocnemii (fast-twitch oxidative-glycolytic fibers) was significantly higher in the trained compared with the sedentary obese rats in the absence of insulin and in the presence of the three insulin concentrations. Significant improvements in 3-OMG transport were also observed in the plantarii (mixed fibers) of trained obese rats in the presence of 0, 0.15, and 15.0 mU/ml insulin. Training appeared to have little effect on the insulin-stimulated 3-OMG transport of the soleus (slow-twitch oxidative fibers) or white gastrocnemius (fast-twitch glycolytic fibers). The results suggest that the improvement in the muscle insulin resistance of the obese Zucker rat after moderate endurance training was associated with an improvement in the glucose transport process but that it was fiber-type specific.


Sign in / Sign up

Export Citation Format

Share Document