Faculty Opinions recommendation of RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells.

Author(s):  
Richard J Naftalin
2011 ◽  
Vol 300 (6) ◽  
pp. C1415-C1421 ◽  
Author(s):  
Xia Guo ◽  
Pedro A. Jose ◽  
Shi-You Chen

Previous studies demonstrate that response gene to complement 32 (RGC-32) mediates transforming growth factor-β1-induced epithelial-mesenchymal transition (EMT) of human renal proximal tubular cells. However, the mechanisms underlying RGC-32 function remain largely unknown. In the present study, we found that RGC-32 function in EMT is associated with Smad3. Coexpression of RGC-32 and Smad3, but not Smad2, induces a higher mesenchymal marker α-smooth muscle actin (α-SMA) protein expression as compared with RGC-32 or Smad3 alone, while knockdown of Smad3 using short hairpin interfering RNA blocks RGC-32-induced α-SMA expression. These data suggest that RGC-32 interacts with Smad3, but not Smad2, in the regulation of EMT. In addition to α-SMA, RGC-32 and Smad3 also synergistically activate the expression of extracellular matrix protein fibronectin and downregulate the epithelial marker E-cadherin. RGC-32 colocalizes with Smad3 in the nuclei of renal proximal tubular cells. Coimmunoprecipitation assays showed that Smad3, but not Smad2, physically interacts with RGC-32 in renal proximal tubular cells. Mechanistically, RGC-32 and Smad3 coordinate the induction of EMT by regulating the EMT regulators Slug and Snail. Taken together, our data demonstrate for the first time that RGC-32 interacts with Smad3 to mediate the EMT of human renal proximal tubular cells.


1996 ◽  
Vol 271 (1) ◽  
pp. F120-F125 ◽  
Author(s):  
G. S. Kuncio ◽  
R. Alvarez ◽  
S. Li ◽  
P. D. Killen ◽  
E. G. Neilson

We have examined the expression of the alpha 1(IV) collagen gene in murine proximal tubular cells (MCT) to better understand how it is regulated in parenchymal cells. Transcriptional activity was examined using luciferase reporters driven by the alpha 1(IV) promoter and varying lengths of 5'-flanking sequences. The minimal bidirectional promoter showed low intrinsic activity in MCT cells, but addition of upstream sequences increased luciferase expression. Maximal activity resided within the first 1,200 bp upstream. A minigene construct was generated by placing a portion of the alpha 1(IV) first intron downstream from the promoter region. The intronic sequences significantly decreased activity of the promoter in MCT cells and 3T3 fibroblasts but greatly enhanced expression in murine parietal yolk sac (PYS) endodermal cells. Addition of transforming growth factor-beta (TGF-beta) to MCT cultures elevated the levels of secreted type IV collagen. Treatment of either transiently or stably transfected MCT cells with TGF-beta produced an increase in the levels of expression of all of the reporters tested. These data support the hypothesis that cell-specific regulation of alpha 1(IV) collagen is dependent upon downstream sequences, which act to decrease the expression of type IV collagen in tubular epithelium. The activity of the alpha 1(IV) collagen gene in proximal tubular cells is increased by TGF-beta, which acts on the domain(s) embedded within the intergenic bidirectional promoter.


Sign in / Sign up

Export Citation Format

Share Document