Faculty Opinions recommendation of Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS.

Author(s):  
Linda Ball ◽  
Victoria Ann Higman
2008 ◽  
Vol 15 (10) ◽  
pp. 1031-1039 ◽  
Author(s):  
Manuel Etzkorn ◽  
Holger Kneuper ◽  
Pia Dünnwald ◽  
Vinesh Vijayan ◽  
Jens Krämer ◽  
...  

2009 ◽  
Vol 192 (4) ◽  
pp. 1156-1159 ◽  
Author(s):  
Changsoo Chang ◽  
Christine Tesar ◽  
Minyi Gu ◽  
Gyorgy Babnigg ◽  
Andrzej Joachimiak ◽  
...  

ABSTRACT We present the crystal structure of the extracytoplasmic domain of the Bacillus subtilis PhoR sensor histidine kinase, part of a two-component system involved in adaptation to low environmental phosphate concentrations. In addition to the PhoR structure, we predict that the majority of the extracytoplasmic domains of B. subtilis sensor kinases will adopt a fold similar to the ubiquitous PAS domain.


2007 ◽  
Vol 283 (2) ◽  
pp. 1167-1178 ◽  
Author(s):  
Xiaolei Ma ◽  
Nazish Sayed ◽  
Padmamalini Baskaran ◽  
Annie Beuve ◽  
Focco van den Akker

Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 885-896 ◽  
Author(s):  
J. Estelle Foster ◽  
Qin Sheng ◽  
Jonathan R. McClain ◽  
Mark Bures ◽  
Thalia I. Nicas ◽  
...  

Two-component signal transduction systems (TCSs) play fundamental roles in bacterial survival and pathogenesis and have been proposed as targets for the development of novel classes of antibiotics. A new coupled assay was developed and applied to analyse the kinetic mechanisms of three new kinds of inhibitors of TCS function. The assay exploits the biochemical properties of the cognate HpkA–DrrA histidine kinase–response regulator pair from Thermotoga maritima and allows multiple turnovers of HpkA, linear formation of phosphorylated DrrA, and Michaelis–Menten analysis of inhibitors. The assay was validated in several ways, including confirmation of competitive inhibition by adenosine 5′-β,γ-imidotriphosphate (AMP-PNP). The coupled assay, autophosphorylation and chemical cross-linking were used to determine the mechanisms by which several compounds inhibit TCS function. A cyanoacetoacetamide showed non-competitive inhibition with respect to ATP concentration in the coupled assay. The cyanoacetoacetamide also inhibited autophosphorylation of histidine kinases from other bacteria, indicating that the coupled assay could detect general inhibitors of histidine kinase function. Inhibition of HpkA autophosphorylation by this compound was probably caused by aggregation of HpkA, consistent with a previous model for other hydrophobic compounds. In contrast, ethodin was a potent inhibitor of the combined assay, did not inhibit HpkA autophosphorylation, but still led to aggregation of HpkA. These data suggest that ethodin bound to the HpkA kinase and inhibited transfer of the phosphoryl group to DrrA. A peptide corresponding to the phosphorylation site of DrrA appeared to inhibit TCS function by a mechanism similar to that of ethodin, except that autophosphorylation was inhibited at high peptide concentrations. The latter mechanism of inhibition of TCS function is unusual and its analysis demonstrates the utility of these approaches to the kinetic analyses of additional new classes of inhibitors of TCS function.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Juni Sarkar ◽  
Daniel P. Miller ◽  
Lee D. Oliver ◽  
Richard T. Marconi

ABSTRACTPeriodontal disease (PD) results from a shift in the composition of the microbial community of the subgingival crevice. As the bacterial population transitions from Gram-positive bacteria to predominantly Gram-negative anaerobes and spirochetes, dramatic changes occur in the physiological and immunological environment at diseased sites.Treponema denticolathrives in periodontal pockets, indicating that it has a unique ability to adapt to changing environmental conditions. Hpk2 (tde1970), a Per-Arnt-Sim motif (PAS) domain-containing histidine kinase (HK), is part of theT. denticolaHpk2-Rrp2 (tde1969) two-component regulatory (TCR) system. This TCR system is growth phase regulated and has been postulated to play a key role in adaptive responses. In this study, we employ predictive structural analyses and site-directed mutagenesis to investigate the functional role of specific amino acid residues located within the Hpk2 PAS domain. Specific substitutions impacted autophosphorylation (AP), phosphotransfer (PT), oligomerization, and hemin binding. The AP, PT, hemin binding, and oligomerization potential of some mutated Hpk2 proteins differed under aerobic versus anaerobic reaction conditions. The data presented here suggest that the regulatory activity of Hpk2 is linked to diatomic gas levels. In a broader sense, this study highlights the importance of studying proteins produced by anaerobes under conditions that approximate the environment in which they thrive.IMPORTANCEPeriodontal disease affects nearly 60% of the global adult population. Its costs to individuals, and to society as a whole, are enormous. As periodontal disease develops, there is a shift in the composition of the oral microbial community. The bacteria that become dominant are able to cause significant damage to the tissues that support the teeth, leading to tooth loss.Treponema denticolais one of the keystone pathogens associated with periodontal disease. An earlier study demonstrated that the Hpk2 and Rrp2 proteins play an important role in adaptive responses. Here, we explore the role of specific Hpk2 amino acids in environmental sensing and function, using structural analyses and site-directed mutagenesis.


2005 ◽  
Vol 83 (6) ◽  
pp. 563-570 ◽  
Author(s):  
Michael G Mason ◽  
G Eric Schaller

Ethylene is a gaseous hormone that regulates many aspects of plant growth and development. Although the effect of ethylene on plant growth was discovered a century ago, the key players in the ethylene response pathway were only identified over the last 15 years. In Arabidopsis, ethylene is perceived by a family of five receptors (ETR1, ETR2, ERS1, ERS2, and EIN4) that resemble two-component histidine kinases. Of these, only ETR1 and ERS1 contain all the conserved residues required for histidine kinase activity. The ethylene receptors appear to function primarily through CTR1, a serine/threonine kinase that actively suppresses ethylene responses in air (absence of ethylene). Despite recent progress toward understanding ethylene signal transduction, the role of the ethylene-receptor histidine-kinase activity remains unclear. This review considers the significance of histidine kinase activity in ethylene signaling and possible mechanisms by which it may modulate ethylene responses.Key words: ethylene receptor, ETR1, histidine kinase, two-component, phosphorylation, Arabidopsis.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Jennifer K. Teschler ◽  
Andrew T. Cheng ◽  
Fitnat H. Yildiz

ABSTRACT Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae. vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.


2001 ◽  
Vol 183 (24) ◽  
pp. 7206-7212 ◽  
Author(s):  
Dimitris Georgellis ◽  
Ohsuk Kwon ◽  
Edmund C. C. Lin ◽  
Sandy M. Wong ◽  
Brian J. Akerley

ABSTRACT The Arc (anoxic redox control) two-component signal transduction system of Escherichia coli, which comprises the tripartite ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous operons in response to redox conditions of growth. We demonstrate that the arcA and arcBgenes of Haemophilus influenzae specify a two-component system. The Arc proteins of the two bacterial species sufficiently resemble each other that they can participate in heterologous transphosphorylation in vitro. Moreover, the Arc system of H. influenzae mediates transcriptional control according to the redox condition of growth both autologously in its own host and homologously in E. coli, indicating a high degree of functional conservation of the signal transduction system. The H. influenzae ArcB, however, lacks the PAS domain present in the region of E. coli ArcB linking the transmembrane to the cytosolic catalytic domains. Because the PAS domain participates in signal reception in a variety of sensory proteins, including sensors of molecular oxygen and redox state, a similar role was previously ascribed to it in ArcB. Our results demonstrate that the ArcB protein of H. influenzae mediates signal transduction in response to redox conditions of growth despite the absence of the PAS domain.


Sign in / Sign up

Export Citation Format

Share Document