sensor kinases
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Francesca Zappa ◽  
Nerea L. Muniozguren ◽  
Jose Carlos Ponce-Rojas ◽  
Diego Acosta-Alvear

The double-stranded RNA sensor kinase PKR is one of four integrated stress response (ISR) sensor kinases that phosphorylate the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) in response to stress. The current model of PKR activation considers the formation of back-to-back PKR dimers as a prerequisite for signal propagation. Here we show that PKR signaling involves the assembly of dynamic PKR clusters. PKR clustering is driven by ligand binding to PKR′s sensor domain and by front-to-front interfaces between PKR′s kinase domains. PKR clusters are discrete, heterogeneous, autonomous coalescences that share some protein components with processing bodies. Strikingly, eIF2α is not recruited to PKR clusters, and PKR cluster disruption enhances eIF2α phosphorylation. Together, these results support a model in which PKR clustering buffers downstream signaling, which may enable proofreading the ISR.


2021 ◽  
Author(s):  
Ritesh R Sevalkar ◽  
Joel N Glasgow ◽  
Martin Pettinati ◽  
Marcelo A Martin ◽  
Vineel P Reddy ◽  
...  

Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we tested the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KD = 5.64 uM) but not the ferrous (Fe2+) form. No interaction with DosT was detected. Thus, the mechanism by which DosS senses H2S is different from that for sensing NO and CO, which bind only the ferrous forms of DosS and DosT. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce Dos regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS-Fe3+. These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jan Skalak ◽  
Katrina Leslie Nicolas ◽  
Radomira Vankova ◽  
Jan Hejatko

Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.


2021 ◽  
Vol 22 (4) ◽  
pp. 1880
Author(s):  
Tania Henriquez ◽  
Larissa Wirtz ◽  
Dan Su ◽  
Heinrich Jung

The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.


2020 ◽  
pp. jbc.RA120.015999
Author(s):  
Marius Stopp ◽  
Philipp Aloysius Steinmetz ◽  
Christopher Schubert ◽  
Christian Griesinger ◽  
Dirk Schneider ◽  
...  

Transmembrane signaling is a key process of membrane bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by transmembrane helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in transmembrane signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable transmembrane homodimer in both the inactive and fumarate-activated state of DcuS. A S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplasmic side into the α6-helix of the sensory PASP domain, and on the cytoplasmic side into the α1-helix of PASC. PASC has to transmit the signal to the C-terminal kinase domain. A helical linker on the cytoplasmic side connecting TM2 with PASC contains a LxxxLxxxL sequence. The dimeric state of the linker was relieved during fumarate activation of DcuS, indicating structural rearrangements in the linker. Thus, DcuS contains a long α-helical structure reaching from the sensory PASP (α6) domain across the membrane to α1(PASC). Taken together, the results suggest piston-type transmembrane signaling by the TM2-homodimer from PASP across the full TM region, whereas the fumarate-destabilized linker dimer converts the signal on the cytoplasmic side for PASC and kinase regulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vitor Marcel Faca ◽  
Ethan J. Sanford ◽  
Jennifer Tieu ◽  
William Comstock ◽  
Shagun Gupta ◽  
...  

Abstract The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.


2020 ◽  
Vol 295 (23) ◽  
pp. 8106-8117 ◽  
Author(s):  
Sophie Bouillet ◽  
Ti Wu ◽  
Shaoxing Chen ◽  
Ann M. Stock ◽  
Rong Gao

Histidine protein kinases (HKs) are prevalent prokaryotic sensor kinases that are central to phosphotransfer in two-component signal transduction systems, regulating phosphorylation of response regulator proteins that determine the output responses. HKs typically exist as dimers and can potentially autophosphorylate at each conserved histidine residue in the individual protomers, leading to diphosphorylation. However, analyses of HK phosphorylation in biochemical assays in vitro suggest negative cooperativity, whereby phosphorylation in one protomer of the dimer inhibits phosphorylation in the second protomer, leading to ∼50% phosphorylation of the available sites in dimers. This negative cooperativity is often correlated with an asymmetric domain arrangement, a common structural characteristic of autophosphorylation states in many HK structures. In this study, we engineered covalent dimers of the cytoplasmic domains of Escherichia coli CpxA, enabling us to quantify individual species: unphosphorylated, monophosphorylated, and diphosphorylated dimers. Together with mathematical modeling, we unambiguously demonstrate no cooperativity in autophosphorylation of CpxA despite its asymmetric structures, indicating that these asymmetric domain arrangements are not linked to negative cooperativity and hemiphosphorylation. Furthermore, the modeling indicated that many parameters, most notably minor amounts of ADP generated during autophosphorylation reactions or present in ATP preparations, can produce ∼50% total phosphorylation that may be mistakenly attributed to negative cooperativity. This study also establishes that the engineered covalent heterodimer provides a robust experimental system for investigating cooperativity in HK autophosphorylation and offers a useful tool for testing how symmetric or asymmetric structural features influence HK functions.


2019 ◽  
Vol 71 (5) ◽  
pp. 1723-1733 ◽  
Author(s):  
Ching-Yi Liao ◽  
Diane C Bassham

Abstract Autophagy is a conserved recycling process in which cellular components are delivered to and degraded in the vacuole/lysosome for reuse. In plants, it assists in responding to dynamic environmental conditions and maintaining metabolite homeostasis under normal or stress conditions. Under stress, autophagy is activated to remove damaged components and to recycle nutrients for survival, and the energy sensor kinases target of rapamycin (TOR) and SNF-related kinase 1 (SnRK1) are key to this activation. Here, we discuss accumulating evidence that hormone signaling plays critical roles in regulating autophagy and plant stress responses, although the molecular mechanisms by which this occurs are often not clear. Several hormones have been shown to regulate TOR activity during stress, in turn controlling autophagy. Hormone signaling can also regulate autophagy gene expression, while, reciprocally, autophagy can regulate hormone synthesis and signaling pathways. We highlight how the interplay between major energy sensors, plant hormones, and autophagy under abiotic and biotic stress conditions can assist in plant stress tolerance.


Microbiology ◽  
2019 ◽  
Vol 165 (9) ◽  
pp. 929-952 ◽  
Author(s):  
Thomas C. McLean ◽  
Rebecca Lo ◽  
Natalia Tschowri ◽  
Paul A. Hoskisson ◽  
Mahmoud M. Al Bassam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document