scholarly journals Faculty Opinions recommendation of Role of the two sialic acid binding sites on the newcastle disease virus HN protein in triggering the interaction with the F protein required for the promotion of fusion.

Author(s):  
Anne Moscona
2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Udaya S. Rangaswamy ◽  
Weijia Wang ◽  
Xing Cheng ◽  
Patrick McTamney ◽  
Danielle Carroll ◽  
...  

ABSTRACT Newcastle disease virus (NDV) is an oncolytic virus being developed for the treatment of cancer. Following infection of a human ovarian cancer cell line (OVCAR3) with a recombinant low-pathogenic NDV, persistent infection was established in a subset of tumor cells. Persistently infected (PI) cells exhibited resistance to superinfection with NDV and established an antiviral state, as demonstrated by upregulation of interferon and interferon-induced genes such as myxoma resistance gene 1 (Mx1) and retinoic acid-inducing gene-I (RIG-I). Viruses released from PI cells induced higher cell-to-cell fusion than the parental virus following infection in two tumor cell lines tested, HT1080 and HeLa, and remained attenuated in chickens. Two mutations, one in the fusion (F) protein cleavage site, F117S (F117S), and another in hemagglutinin-neuraminidase (HN), G169R (HN169R), located in the second sialic acid binding region, were responsible for the hyperfusogenic phenotype. F117S improves F protein cleavage efficiency, facilitating cell-to-cell fusion, while HN169R possesses a multifaceted role in contributing to higher fusion, reduced receptor binding, and lower neuraminidase activity, which together result in increased fusion and reduced viral replication. Thus, establishment of persistent infection in vitro involves viral genetic changes that facilitate efficient viral spread from cell to cell as a potential mechanism to escape host antiviral responses. The results of our study also demonstrate a critical role in the viral life cycle for the second receptor binding region of the HN protein, which is conserved in several paramyxoviruses. IMPORTANCE Oncolytic Newcastle disease virus (NDV) could establish persistent infection in a tumor cell line, resulting in a steady antiviral state reflected by constitutively expressed interferon. Viruses isolated from persistently infected cells are highly fusogenic, and this phenotype has been mapped to two mutations, one each in the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. The F117S mutation in the F protein cleavage site improved F protein cleavage efficiency while the HN169R mutation located at the second receptor binding site of the HN protein contributed to a complex phenotype consisting of a modest increase in fusion and cell killing, lower neuraminidase activity, and reduced viral growth. This study highlights the intricate nature of these two mutations in the glycoproteins of NDV in the establishment of persistent infection. The data also shed light on the critical balance between the F and HN proteins required for efficient NDV infection and their role in avian pathogenicity.


2004 ◽  
Vol 78 (7) ◽  
pp. 3733-3741 ◽  
Author(s):  
Viatcheslav Zaitsev ◽  
Mark von Itzstein ◽  
Darrin Groves ◽  
Milton Kiefel ◽  
Toru Takimoto ◽  
...  

ABSTRACT Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.


2004 ◽  
Vol 78 (23) ◽  
pp. 13351-13355 ◽  
Author(s):  
Tatiana L. Bousse ◽  
Garry Taylor ◽  
Sateesh Krishnamurthy ◽  
Allen Portner ◽  
Siba K. Samal ◽  
...  

ABSTRACT The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein responsible for attachment to receptors containing sialic acid, neuraminidase (NA) activity, and the promotion of membrane fusion, which is induced by the fusion protein. Analysis of the three-dimensional structure of Newcastle disease virus (NDV) HN protein revealed the presence of a large pocket, which mediates both receptor binding and NA activities. Recently, a second sialic acid binding site on HN was revealed by cocrystallization of the HN with a thiosialoside Neu5Ac-2-S-α(2,6)Gal1OMe, suggesting that NDV HN contains an additional sialic acid binding site. To evaluate the role of the second binding site on the life cycle of NDV, we rescued mutant viruses whose HNs were mutated at Arg516, a key residue that is involved in the second binding site. Loss of the second binding site on mutant HNs was confirmed by the hemagglutination inhibition test, which uses an inhibitor designed to block the NA active site. Characterization of the biological activities of HN showed that the mutation at Arg516 had no effect on NA activity. However, the fusion promotion activity of HN was substantially reduced by the mutation. Furthermore, the mutations at Arg516 slowed the growth rate of virus in tissue culture cells. These results suggest that the second binding site facilitates virus infection and growth by enhancing the fusion promotion activity of the HN.


2002 ◽  
Vol 76 (4) ◽  
pp. 1816-1824 ◽  
Author(s):  
Helen Connaris ◽  
Toru Takimoto ◽  
Rupert Russell ◽  
Susan Crennell ◽  
Ibrahim Moustafa ◽  
...  

ABSTRACT We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.


2021 ◽  
Vol 100 (5) ◽  
pp. 101067
Author(s):  
Ana Paula Del Vesco ◽  
Hyun Jun Jang ◽  
Melissa S. Monson ◽  
Susan J. Lamont

2009 ◽  
Vol 83 (11) ◽  
pp. 5943-5946 ◽  
Author(s):  
Yongqi Yan ◽  
Subrat N. Rout ◽  
Shin-Hee Kim ◽  
Siba K. Samal

ABSTRACT To determine the role of untranslated regions (UTRs) in replication and pathogenesis of Newcastle disease virus (NDV), we generated recombinant viruses with deletions in 5′ and 3′ UTRs of the HN mRNA. Deletion of any HN UTR did not noticeably affect in vitro replication of these viruses. However, complete deletion of the 5′ UTR of the HN gene decreased the HN mRNA levels and HN protein contents in virus particles, resulting in attenuation of the virus in chickens. This indicates that the 5′ UTR of HN mRNA plays an important role in replication and pathogenicity of NDV in vivo.


Sign in / Sign up

Export Citation Format

Share Document