Faculty Opinions recommendation of Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40).

Author(s):  
Job Dekker
1992 ◽  
Vol 11 (12) ◽  
pp. 4565-4572 ◽  
Author(s):  
J.A. Sharpe ◽  
P.S. Chan-Thomas ◽  
J. Lida ◽  
H. Ayyub ◽  
W.G. Wood ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3811-3812 ◽  
Author(s):  
Vip Viprakasit ◽  
Cornelis L. Harteveld ◽  
Helena Ayyub ◽  
Jackie S. Stanley ◽  
Piero C. Giordano ◽  
...  

1991 ◽  
Vol 11 (9) ◽  
pp. 4679-4689
Author(s):  
A P Jarman ◽  
W G Wood ◽  
J A Sharpe ◽  
G Gourdon ◽  
H Ayyub ◽  
...  

The major positive regulatory activity of the human alpha-globin gene complex has been localized to an element associated with a strong erythroid-specific DNase I hypersensitive site (HS -40) located 40 kb upstream of the zeta 2-globin mRNA cap site. Footprint and gel shift analyses of the element have demonstrated the presence of four binding sites for the nuclear factor GATA-1 and two sites corresponding to the AP-1 consensus binding sequence. This region resembles one of the major elements of the beta-globin locus control region in its constitution and characteristics; this together with evidence from expression studies suggests that HS -40 is a primary element controlling alpha-globin gene expression.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1202-1211 ◽  
Author(s):  
A Bernet ◽  
S Sabatier ◽  
DJ Picketts ◽  
R Ouazana ◽  
F Morle ◽  
...  

Abstract We have examined the role of the major positive upstream regulatory element of the human alpha-globin gene locus (HS-40) in its natural chromosomal context. Using homologous recombination, HS-40 was replaced by a neo marker gene in a mouse erythroleukemia hybrid cell line containing a single copy of human chromosome 16. In clones from which HS-40 had been deleted, human alpha-globin gene expression was severely reduced, although basal levels of alpha 1 and alpha 2-globin mRNA expression representing less than 3% of the level in control cell lines were detected. Deletion of the neo marker gene, by using FLP recombinase/FLP recombinase target system, proved that the phenotype observed was not caused by the regulatory elements of this marker gene. In the targeted clones, deletion of HS-40 apparently does not affect long-range or local chromatin structure at the alpha promoters. Therefore, these results indicate that, in the experimental system used, HS-40 behaves as a strong inducible enhancer of human alpha- globin gene expression.


2004 ◽  
Vol 15 (3) ◽  
pp. 1185-1196 ◽  
Author(s):  
María-Cruz Marín ◽  
José-Rodrigo Rodríguez ◽  
Alberto Ferrús

The Drosophila wings-up A gene encodes Troponin I. Two regions, located upstream of the transcription initiation site (upstream regulatory element) and in the first intron (intron regulatory element), regulate gene expression in specific developmental and muscle type domains. Based on LacZ reporter expression in transgenic lines, upstream regulatory element and intron regulatory element yield identical expression patterns. Both elements are required for full expression levels in vivo as indicated by quantitative reverse transcription-polymerase chain reaction assays. Three myocyte enhancer factor-2 binding sites have been functionally characterized in each regulatory element. Using exon specific probes, we show that transvection is based on transcriptional changes in the homologous chromosome and that Zeste and Suppressor of Zeste 3 gene products act as repressors for wings-up A. Critical regions for transvection and for Zeste effects are defined near the transcription initiation site. After in silico analysis in insects (Anopheles and Drosophila pseudoobscura) and vertebrates (Ratus and Coturnix), the regulatory organization of Drosophila seems to be conserved. Troponin I (TnI) is expressed before muscle progenitors begin to fuse, and sarcomere morphogenesis is affected by TnI depletion as Z discs fail to form, revealing a novel developmental role for the protein or its transcripts. Also, abnormal stoichiometry among TnI isoforms, rather than their absolute levels, seems to cause the functional muscle defects.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 594-594
Author(s):  
Pu Zhang ◽  
Gang Huang ◽  
Alex Ebralidze ◽  
Jun-Yan Zhang ◽  
Annalisa DiRuscio ◽  
...  

Abstract The level of expression of the transcription factor PU.1 is a critical determinant of lineage commitment in normal hematopoiesis, and dysregulation of PU.1 leads to development of leukemia. In mice with targeted disruption of the PU.1 upstream regulatory element (URE), expression of PU.1 is decreased to 20% of wild type levels and results in development of acute myeloid leukemia (AML). These data suggests that tightly regulated PU.1 expression is important to maintain normal hematopoiesis and prevent leukemogenesis. Previously, we reported that AML1 (RUNX1) regulated PU.1 expression. Here we demonstrate that AMLl regulates PU.1 through 3 AML1 binding sites in the URE. Mice with targeted mutations in the 3 AML1 binding sites have decreased PU.1 expression in multiple hematopoietic lineages at multiple different developmental stages. Conditional targeting of AML1 in transgenic mice in which the URE homology region 2 (H2, containing all 3 AML1 binding sites) is used to drive expression of a reporter decreased reporter gene expression, suggesting that AML1 regulates PU.1 through these 3 sites in URE homology region 2. Using a second mouse model with a targeted mutation in the PU.1 binding site in the PU.1 URE (which is flanked by the 3 AML1 sites), we demonstrated that PU.1 indeed autoregulates itself through the URE. These results demonstrated that AML1 regulates PU.1 through the 3 AML1 sites in the URE. However, while low levels of PU.1 lead to leukemia, we have not observed frank leukemia development in AML1 conditional knockouts or in mice with targeted disruption of the 3 AML1 sites in the PU.1 URE. We hypothesized that this might be the case because disruption of AML1 or the AML1 sites reduces PU.1 levels to about 40% of wild type, but not as great as that found in PU.1 URE knockouts, which do progress to AML (20% of wild type). We hypothesized that downregulation of PU.1 as a result of binding of AML1/ETO fusion proteins to the URE might result in further reductions of PU.1 expression, and contribute to leukemogenesis. Therefore, we predicted that development of leukemia might be delayed in mice with mutations in the PU.1 URE AML1 DNA binding sites, and this was indeed the case in a modle using a retrovirus expressing the AML1/ETO9a form. We further explored the effect of AML1 and PU.1 binding on chromatin strucutre using chromatin immunoprecipitation (Chip) in the AML1 and PU.1 site URE knockin models, and found that AML1 is involved in H3K4me3 and H3/H4 acetylation of histone tails in the PU.1 URE, while PU.1 is involved in H3/H4 acetylation but not H3K4me3; H3K4 methylation and H3 acetylation decreased in AML1 sites mutant knockin mice and H3 acetylation decreased in PU.1 site mutant knockin mice. Mutation of the AML1 site in mice not only altered the chromatin structure of the URE region, but also interefered with the physical interaction between the URE and PU.1 promoter, as assessed by chromosome capture configuration (3C) assays. Interestingly, the AML1/ETO9a fusion oncogene has a unique role on the epigenetic status of the PU.1 URE in addition to its dominant effect on the 3 AML1 sites. AML1-ETO9 blocks the autoregulation of PU.1 through the PU.1 site in the URE. In summary, our data suggests that AML1 regulates PU.1 expression through 3 AML1 binding sites in the PU.1 URE by modifying chromatin structure in the URE region. In addition, PU.1 can autoregulate itself by facilitating similar epigenetic changes. Dysregulation of the epigenetic status by chromosome translocation products such as AML1-ETO might play an important role in leukemogenesis. First two authors contribute equally to this work.


mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Carol A. Gilchrist ◽  
Ellyn S. Moore ◽  
Yan Zhang ◽  
Christina B. Bousquet ◽  
Joanne A. Lannigan ◽  
...  

ABSTRACTIt is not understood why only some infections withEntamoeba histolyticaresult in disease. The calcium-regulated transcription factor upstream regulatory element 3-binding protein (URE3-BP) was initially identified by virtue of its role in regulating the expression of two amebic virulence genes, the Gal/GalNac lectin and ferredoxin. Here we tested whether this transcription factor has a broader role in regulating virulence. A comparison ofin vivotoin vitroparasite gene expression demonstrated that 39% ofin vivoregulated transcripts contained the URE3 motif recognized by URE3-BP, compared to 23% of all promoters (P< 0.0001). Amebae induced to express a dominant positive mutant form of URE3-BP had an increase in an elongated morphology (30% ± 6% versus 14% ± 5%;P= 0.001), a 2-fold competitive advantage at invading the intestinal epithelium (P= 0.017), and a 3-fold increase in liver abscess size (0.1 ± 0.1 g versus 0.036 ± 0.1 g;P= 0.03). These results support a role for URE3-BP in virulence regulation.IMPORTANCEAmebic dysentery and liver abscess are caused byEntamoeba histolytica. Amebae colonize the colon and cause disease by invading the intestinal epithelium. However, only one in fiveE. histolyticainfections leads to disease. The factors that govern the transition from colonization to invasion are not understood. The transcription factor upstream regulatory element 3-binding protein (URE3-BP) is a calcium-responding regulator of theE. histolyticaGal/GalNAc lectin and ferredoxin genes, both implicated in virulence. Here we discovered that inducible expression of URE3-BP changed trophozoite morphology and promoted parasite invasion in the colon and liver. These results indicate that one determinant of virulence is transcriptional regulation by URE3-BP.


Sign in / Sign up

Export Citation Format

Share Document