Faculty Opinions recommendation of Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment.

Author(s):  
Paul Frenette ◽  
Daniel Lucas
Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3764-3771 ◽  
Author(s):  
Jing Chen ◽  
André Larochelle ◽  
Simon Fricker ◽  
Gary Bridger ◽  
Cynthia E. Dunbar ◽  
...  

Current myeloablative conditioning regimens for hematopoietic stem cell (HSC) transplantation are associated with significant morbidity and mortality. Thus, alternative strategies to promote engraftment of infused HSCs with increased safety warrant investigation. Using parabiotic mice, we determined that, after mobilization with AMD3100 (a CXCR4 antagonist), HSCs exited from marrow, transited blood, and engrafted in open niches in partner marrow. We then hypothesized that mobilization before transplantation might vacate niches and improve HSC engraftment. When PeP3b mice were treated with AMD3100 at 2 hours before the transplantation of 4 × 107 marrow cells, donor cell engraftment was higher (4.6% ± 1.1%) than in control animals (no AMD3100; 1.0% ± 0.24%, P < .001). When mice received weekly injections of AMD3100 on 3 consecutive weeks and marrow cells were transplanted 2 hours after each mobilization, donor cell engraftment further increased (9.1% ± 1.7%, P = .001). In contrast, in similar experiments with Balb/cByJ mice that mobilize poorly, there was no difference between the donor cell engraftment of AMD3100-treated and control recipients. These results indicate that the number of available niches regulates the number of HSCs. In addition, mobilization with AMD3100 may provide a safer preparative approach for HSC transplantation in genetic and other nonmalignant disorders.


2006 ◽  
Vol 6 ◽  
pp. 246-253 ◽  
Author(s):  
Elizabeth Hexner

Much attention has focused on the immune recovery of donor T cells following hematopoietic stem cell transplantation (HSCT). Termed immune reconstitution, a better understanding of the dynamics of the functional recovery of immune cells following HSCT has important implications both for fighting infections and, in the allogeneic setting, for providing antitumor activity while controlling graft-vs.-host disease (GVHD). The immune cells involved in immune reconstitution include antigen-presenting cells, B lymphocytes, natural killer cells, and, in particular, T lymphocytes, the immune cell that will be the subject of this review. In addition, T cells can play an important role in the process of engraftment of hematopoietic stem cells. The evidence for a T cell tropic effect on hematopoietic engraftment is both direct and indirect, and comes from the clinic as well as the research lab. Animal models have provided useful clues, but the molecular mechanisms that govern the interaction between donor stem cells, donor T cells, the host immune system, and the stem cell niche remain obscure. This review will describe the current published clinical and basic evidence related to T cells and stem cell engraftment, and will identify future directions for translational research in this area.


Blood ◽  
2018 ◽  
Vol 132 (7) ◽  
pp. 735-749 ◽  
Author(s):  
Simranpreet Kaur ◽  
Liza J. Raggatt ◽  
Susan M. Millard ◽  
Andy C. Wu ◽  
Lena Batoon ◽  
...  

Key Points Recipient macrophages persist in hematopoietic tissues and self-repopulate via in situ proliferation after syngeneic transplantation. Targeted depletion of recipient CD169+ macrophages after transplant impaired long-term bone marrow engraftment of hematopoietic stem cells.


Sign in / Sign up

Export Citation Format

Share Document