Faculty Opinions recommendation of Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization.

Author(s):  
William Shafer
Nature ◽  
2010 ◽  
Vol 465 (7296) ◽  
pp. 346-349 ◽  
Author(s):  
Tadayuki Iwase ◽  
Yoshio Uehara ◽  
Hitomi Shinji ◽  
Akiko Tajima ◽  
Hiromi Seo ◽  
...  

2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2007 ◽  
Vol 56 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Antonia Nostro ◽  
Andrea Sudano Roccaro ◽  
Giuseppe Bisignano ◽  
Andreana Marino ◽  
Maria A. Cannatelli ◽  
...  

The aim of this study was to evaluate the effect of oregano essential oil, carvacrol and thymol on biofilm-grown Staphylococcus aureus and Staphylococcus epidermidis strains, as well as the effects of the oils on biofilm formation. For most of the S. aureus (n=6) and S. epidermidis (n=6) strains tested, the biofilm inhibitory concentration (0.125–0.500 %, v/v, for oregano, and 0.031–0.125 %, v/v, for carvacrol and thymol) and biofilm eradication concentration (0.25–1.0 %, v/v, for oregano and 0.125–0.500 %, v/v, for carvacrol and thymol) values were twofold or fourfold greater than the concentration required to inhibit planktonic growth. Subinhibitory concentrations of the oils attenuated biofilm formation of S. aureus and S. epidermidis strains on polystyrene microtitre plates.


2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


2004 ◽  
Vol 186 (8) ◽  
pp. 2449-2456 ◽  
Author(s):  
Kimberly K. Jefferson ◽  
Danielle B. Pier ◽  
Donald A. Goldmann ◽  
Gerald B. Pier

ABSTRACT Infections involving Staphylococcus aureus are often more severe and difficult to treat when the organism assumes a biofilm mode of growth. The polysaccharide poly-N-acetylglucosamine (PNAG), also known as polysaccharide intercellular adhesin, is synthesized by the products of the intercellular adhesin (ica) locus and plays a key role in biofilm formation. Numerous conditions and exogenous factors influence ica transcription and PNAG synthesis, but the regulatory factors and pathways through which these environmental stimuli act have been only partially characterized. We developed a DNA affinity chromatography system to purify potential regulatory proteins that bind to the ica promoter region. Using this technique, we isolated four proteins, including the staphylococcal gene regulator SarA, a MarR family transcriptional regulator of the teicoplanin-associated locus TcaR, DNA-binding protein II, and topoisomerase IV, that bound to the ica promoter. Site-directed deletion mutagenesis of tcaR indicated that TcaR was a negative regulator of ica transcription, but deletion of tcaR alone did not induce any changes in PNAG production or in adherence to polystyrene. We also investigated the role of IcaR, encoded within the ica locus but divergently transcribed from the biosynthetic genes. As has been shown previously in Staphylococcus epidermidis, we found that IcaR was also a negative regulator of ica transcription in S. aureus. We also demonstrate that mutation of icaR augmented PNAG production and adherence to polystyrene. Transcription of the ica locus, PNAG production, and adherence to polystyrene were further increased in a tcaR icaR double mutant. In summary, TcaR appeared to be a weak negative regulator of transcription of the ica locus, whereas IcaR was a strong negative regulator, and in their absence PNAG production and biofilm formation were enhanced.


Sign in / Sign up

Export Citation Format

Share Document