scholarly journals Anaerobic Conditions Induce Expression of Polysaccharide Intercellular Adhesin in Staphylococcus aureus and Staphylococcus epidermidis

2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.

2014 ◽  
Vol 58 (12) ◽  
pp. 7606-7610 ◽  
Author(s):  
Kaat De Cremer ◽  
Nicolas Delattin ◽  
Katrijn De Brucker ◽  
Annelies Peeters ◽  
Soña Kucharíková ◽  
...  

ABSTRACTWe here report on thein vitroactivity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, includingCandida albicans,Candida glabrata,Candida dubliniensis,Candida krusei,Pseudomonas aeruginosa,Staphylococcus aureus, andStaphylococcus epidermidis. We validated thein vivoefficacy of orally administered toremifene againstC. albicans and S. aureusbiofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


2004 ◽  
Vol 186 (14) ◽  
pp. 4665-4684 ◽  
Author(s):  
Karen E. Beenken ◽  
Paul M. Dunman ◽  
Fionnuala McAleese ◽  
Daphne Macapagal ◽  
Ellen Murphy ◽  
...  

ABSTRACT We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions.


2008 ◽  
Vol 76 (4) ◽  
pp. 1756-1765 ◽  
Author(s):  
Miranda Johnson ◽  
Alan Cockayne ◽  
Julie A. Morrissey

ABSTRACT Staphylococcus aureus biofilm formation is induced in iron-restricted growth conditions in vitro. In this study, we showed that Emp and Eap play important roles in low-iron-induced biofilm formation of S. aureus Newman. Eap and Emp are secreted proteins which are non-covalently attached to the S. aureus cell surface and have previously been implicated in a number of aspects of S. aureus pathogenesis. We showed here that the transcription of these important virulence factors is induced by growth in low-iron medium, reflective of the in vivo environment. Our results show that iron regulation of Eap and Emp is Fur independent. However, Fur is required for full induction of eap and emp expression in low-iron conditions. In this study, we demonstrated that in addition to Fur, low-iron-induced biofilm formation requires Sae, Agr, and SarA. In iron-restricted growth conditions, Sae and Agr are essential for Emp and Eap expression and hence for biofilm formation, whereas SarA appears to have a less-significant role. We also showed that expression of the ica operon is required for biofilm formation in iron-restricted growth conditions. We demonstrated that in fact, ica is required for the expression of the important multifunctional virulence determinants eap and emp.


1998 ◽  
Vol 42 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Silvia Schwank ◽  
Zarko Rajacic ◽  
Werner Zimmerli ◽  
Jürg Blaser

ABSTRACT The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%;P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01).


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2015 ◽  
Vol 82 (1) ◽  
pp. 394-401 ◽  
Author(s):  
Jakub Kwiecinski ◽  
Manli Na ◽  
Anders Jarneborn ◽  
Gunnar Jacobsson ◽  
Marijke Peetermans ◽  
...  

ABSTRACTStaphylococcus aureusbiofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role inS. aureusbiofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating onS. aureusbiofilm formation was tested within vitromicroplate biofilm assays and anin vivomouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by variousS. aureusstrains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics.In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduceS. aureusbiofilm formation bothin vitroandin vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.


2019 ◽  
Vol 14 (13) ◽  
pp. 1133-1146 ◽  
Author(s):  
Xinpeng Jiang ◽  
Xin Yan ◽  
Shanshan Gu ◽  
Yan Yang ◽  
Lili Zhao ◽  
...  

Aim: This study aimed to evaluate the differences of biosurfactants produced by two Lactobacillus helveticus strains against the biofilm formation of Staphylococcus aureus in vitro and in vivo. Materials & methods: Scanning electron microscopy, Real time-quantitative PCR (RT-qPCR) and cell assay were used to analyze the inhibiting effect of biosurfactants against biofilm formation. Results & conclusion: Results showed that the biosurfactants have anti-adhesive and inhibiting effects on biofilm formation in vivo and in vitro. The biofilm-formative genes and autoinducer-2 signaling regulated these characteristics, and the biosurfactant L. helveticus 27170 is better than that of 27058. Host cell adhesion and invasion results indicated that the biosurfactants L. helveticus prevented the S. aureus invading the host cell, which may be a new strategy to eliminate biofilms.


2009 ◽  
Vol 77 (9) ◽  
pp. 3670-3678 ◽  
Author(s):  
Mohammad Shahrooei ◽  
Vishal Hira ◽  
Benoit Stijlemans ◽  
Rita Merckx ◽  
Peter W. M. Hermans ◽  
...  

ABSTRACT Several well-studied proteins with defined roles in Staphylococcus epidermidis biofilm formation are LPXTG motif-containing proteins. Here, we investigate the possible use of the LPXTG motif-containing protein SesC (S . epidermidis surface protein C; accession no. NP_765787) as a target for antibodies to prevent biofilm formation. In vitro and in a in vivo rat model of catheter infection, gene and protein expression analysis showed that SesC is expressed more strongly in biofilm-associated cells than in planktonic cells and is expressed particularly during the late phase of in vivo biofilm formation. Polyclonal rabbit antibodies raised against SesC reduced the fibrinogen-binding ability of S. epidermidis RP62A and Staphylococcus aureus RN4220 transformants expressing SesC, inhibited in vitro biofilm formation by S. epidermidis strains 10b and 1457, and significantly reduced the numbers of bacteria in a 1-day-old in vivo biofilm (P < 0.001, one-way analysis of variance). Our findings revealed that SesC is a promising target for prevention and treatment of S. epidermidis biofilms because it affects both the primary attachment and biofilm accumulation phases. The precise role of SesC in biofilm formation remains to be identified.


Sign in / Sign up

Export Citation Format

Share Document