Faculty Opinions recommendation of The transcription factor DksA prevents conflicts between DNA replication and transcription machinery.

Author(s):  
Martin Marinus
Cell ◽  
2010 ◽  
Vol 141 (4) ◽  
pp. 595-605 ◽  
Author(s):  
Ashley K. Tehranchi ◽  
Matthew D. Blankschien ◽  
Yan Zhang ◽  
Jennifer A. Halliday ◽  
Anjana Srivatsan ◽  
...  

1992 ◽  
Vol 12 (6) ◽  
pp. 2514-2524 ◽  
Author(s):  
Z S Guo ◽  
M L DePamphilis

The origins of DNA replication (ori) in simian virus 40 (SV40) and polyomavirus (Py) contain an auxiliary component (aux-2) composed of multiple transcription factor binding sites. To determine whether this component stimulated replication by binding specific transcription factors, aux-2 was replaced by synthetic oligonucleotides that bound a single transcription factor. Sp1 and T-antigen (T-ag) sites, which exist in the natural SV40 aux-2 sequence, provided approximately 75 and approximately 20%, respectively, of aux-2 activity when transfected into monkey cells. In cell extracts, only T-ag sites were active. AP1 binding sites could replace completely either SV40 or Py aux-2. Mutations that eliminated AP1 binding also eliminated AP1 stimulation of replication. Yeast GAL4 binding sites that strongly stimulated transcription in the presence of GAL4 proteins failed to stimulate SV40 DNA replication, although they did partially replace Py aux-2. Stimulation required the presence of proteins consisting of the GAL4 DNA binding domain fused to specific activation domains such as VP16 or c-Jun. These data demonstrate a clear role for transcription factors with specific activation domains in activating both SV40 and Py ori. However, no correlation was observed between the ability of specific proteins to stimulate promoter activity and their ability to stimulate origin activity. We propose that only transcription factors whose specific activation domains can interact with the T-ag initiation complex can stimulate SV40 and Py ori-core activity.


2012 ◽  
Vol 109 (41) ◽  
pp. 16510-16515 ◽  
Author(s):  
Y. Shi ◽  
A. Dierckx ◽  
P. H. Wanrooij ◽  
S. Wanrooij ◽  
N.-G. Larsson ◽  
...  

2019 ◽  
Vol 116 (9) ◽  
pp. 3734-3739 ◽  
Author(s):  
Sarah E. Dremel ◽  
Neal A. DeLuca

In herpes simplex virus type 1 (HSV-1) infection, the coupling of genome replication and transcription regulation has been known for many years; however, the underlying mechanism has not been elucidated. We performed a comprehensive transcriptomic assessment and factor-binding analysis for Pol II, TBP, TAF1, and Sp1 to assess the effect genome replication has on viral transcription initiation and elongation. The onset of genome replication resulted in the binding of TBP, TAF1, and Pol II to previously silent late promoters. The viral transcription factor, ICP4, was continuously needed in addition to DNA replication for activation of late gene transcription initiation. Furthermore, late promoters contain a motif that closely matches the consensus initiator element (Inr), which robustly bound TAF1 postreplication. Continued DNA replication resulted in reduced binding of Sp1, TBP, and Pol II to early promoters. Therefore, the initiation of early gene transcription is attenuated following DNA replication. Herein, we propose a model for how viral DNA replication results in the differential utilization of cellular factors that function in transcription initiation, leading to the delineation of kinetic class in HSV-productive infection.


2006 ◽  
Vol 80 (8) ◽  
pp. 3904-3911 ◽  
Author(s):  
Gabriel Glockzin ◽  
Klaus Mantwill ◽  
Karsten Jurchott ◽  
Alexandra Bernshausen ◽  
Axel Ladhoff ◽  
...  

ABSTRACT Conditionally replicating adenoviruses are a promising new modality for the treatment of cancer. However, early clinical trials demonstrate that the efficacy of current vectors is limited. Interestingly, DNA replication and production of viral particles do not always correlate with virus-mediated cell lysis and virus release depending on the vector utilized for infection. However, we have previously reported that nuclear accumulation of the human transcription factor YB-1 by regulating the adenoviral E2 late promoter facilitates viral DNA replication of E1-deleted adenovirus vectors which are widely used for cancer gene therapy. Here we report the promotion of virus-mediated cell killing as a new function of the human transcription factor YB-1. In contrast to the E1A-deleted vector dl312 the first-generation adenovirus vector AdYB-1, which overexpresses YB-1 under cytomegalovirus promoter control, led to necrosis-like cell death, virus production, and viral release after infection of A549 and U2OS tumor cell lines. Our data suggest that the integration of YB-1 in oncolytic adenoviruses is a promising strategy for developing oncolytic vectors with enhanced potency against different malignancies.


Reproduction ◽  
2004 ◽  
Vol 128 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Sarah Kimmins ◽  
Noora Kotaja ◽  
Irwin Davidson ◽  
Paolo Sassone-Corsi

Male germ-cell differentiation requires spermatogenic stage- and cell-specific gene expression that is achieved by unique chromatin remodeling, transcriptional control and the expression of testis-specific genes or isoforms. Recent findings have shown that the testis has specialized transcription complexes that coordinate the differentiation program of spermatogenesis. There are male germ cell-specific differences in the components of the general transcription machinery. These include upregulated expression of the TATA-binding protein (TBP) family and its associated cofactors. Importantly, a member of the TBP family, TBP-like factor (TLF), has a distribution pattern that is dependent on the spermatogenic cycle and is essential for spermatogenesis. Interestingly TBP-associated factor (TAF7), a factor of the transcription factor (TF)IID complex, is exchanged at a critical stage in germ cell development for the testis-specific paralogue TAF7L. A compelling amount of data has established that cAMP-response-element modulator (CREM), a transcription factor responsive to the cAMP signal transduction pathway, drives expression of key testis-specific genes. In this review we summarize recent advances in the transcription machinery that is testis-specific, gene-selective and necessary for the process of spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document