Faculty of 1000 evaluation for The pattern of early growth trajectories affects adult breeding performance.

Author(s):  
Michael Angilletta
Ecology ◽  
2012 ◽  
Vol 93 (4) ◽  
pp. 902-912 ◽  
Author(s):  
Who-Seung Lee ◽  
Pat Monaghan ◽  
Neil B. Metcalfe

2012 ◽  
Vol 63 (12) ◽  
pp. 1231 ◽  
Author(s):  
Carina J. Sim-Smith ◽  
Andrew G. Jeffs ◽  
Craig A. Radford

For many fish species, growth and mortality of larvae are closely coupled, with faster-growing larvae generally experiencing higher survivorship in the plankton, which may lead to higher recruitment. Using back-calculated growth trajectories derived from otolith increments we used the modified Fry model to estimate the growth rate of larvae and early juveniles of the commercially important sparid, Chrysophrys auratus, at four sites around northern New Zealand. Back-calculated growth rates were used to test the hypothesis that fish with a short pelagic larval duration (≤20 days) grew faster than did fish with a long pelagic larval duration (>24 days) during both the larval and juvenile periods. At three of the four sites, fish with a short larval duration grew significantly faster during the larval period, and these larvae generally continued to have a larger size-at-age as juveniles up to 70-day-old. Growth rates for both the larval and early juvenile period were also found to vary significantly among the four sites and were found to be unrelated to differences in water temperature. Localised variation in early growth of C. auratus among sites may be important in helping explain differences in their contribution to the recruitment to C. auratus populations.


2020 ◽  
Vol 650 ◽  
pp. 95-106
Author(s):  
S Khamassi ◽  
L Coussau ◽  
M Guillemette ◽  
D Robert

The growth-survival paradigm predicts that year-class strength is determined by growth-dependent mortality during the larval stage. In Atlantic mackerel Scomber scombrus, the possibility that strong growth-dependent mortality extends into the early juvenile stage has not previously been tested because of the difficulty in sampling young-of-the-year (YOY) juveniles. The present study determined the timing of the ‘endpoint’ during the early ontogeny, when growth-selective mortality decreases and recruitment is set. We relied on regurgitations from one of the main predators of mackerel, the northern gannet Morus bassanus, as a source of YOY juveniles. Early growth trajectories of YOY mackerel were reconstructed from the otolith microstructure and were compared to those of 1-yr-old (OYO) juveniles from the same cohort for the year classes of 2015 and 2017. In both cohorts, the early growth trajectory of OYO fish was faster than that of YOY juveniles, indicating that growth-selective mortality extended beyond the larval stage. For the 2017 cohort, the comparison of larval growth trajectories between 2-mo-old YOY, 3mo-old YOY and OYO juveniles indicated that strong selection for fast growth persisted until the pre-wintering period, but that winter mortality likely did not play an important role in shaping year-class strength. These findings suggest that in Atlantic mackerel, the endpoint when the relative strength of cohorts is fixed occurs at the age of 3 mo. These results highlight the importance of considering growth-dependent mortality processes occurring beyond the larval stage to obtain a better understanding of causes of recruitment variability.


2005 ◽  
Vol 2 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Nick J Royle ◽  
Jan Lindström ◽  
Neil B Metcalfe

Early environmental conditions have been suggested to influence subsequent locomotor performance in a range of species, but most measurements have been of initial (baseline) performance. By manipulating early growth trajectories in green swordtail fish, we show that males that underwent compensatory growth as juveniles had a similar baseline swimming endurance when mature adults to ad libitum fed controls. However, they had a reduced capacity to increase endurance with training, which is more likely to relate to Darwinian fitness. Compensatory growth may thus result in important locomotor costs later in life.


Genetics ◽  
1984 ◽  
Vol 107 (1) ◽  
pp. 79-101 ◽  
Author(s):  
Bruce Riska ◽  
William R Atchley ◽  
J J Rutledge

ABSTRACT Effects of normal growth regulation on components of phenotypic variance and covariance of body weight were examined in a cross-fostering study of growth between 2 and 10 wk of age in ICR randombred mice. Different early growth rates caused genetic, postnatal maternal and residual environmental variances to increase, but these variances were subsequently reduced by negative autocorrelation between early and later growth. Postnatal maternal variance continued to increase for about 1 wk after weaning but then decreased substantially. Genetic variance caused by preweaning growth followed a pattern of increase and decrease very similar to that of postnatal maternal variance, but this pattern was masked by new genetic variance. Normal growth regulation affects the magnitudes of genetic variances and serial autocorrelations. The timing of these changes suggests that regulation of cell numbers reduces variance near the end of exponential growth, but this may be obscured by subsequent increase in cell size. In contrast with earlier studies, we find that targeted growth reduces both genetically and environmentally determined differences among early growth trajectories. Final size may be determined by an antagonistic balance between early growth rate and age at initiation of puberty.


Author(s):  
A Macdougall ◽  
O Archangelidi ◽  
P Cullinan ◽  
S Carr ◽  
D Bilton ◽  
...  

2014 ◽  
Vol 281 (1777) ◽  
pp. 20132899 ◽  
Author(s):  
Who-Seung Lee ◽  
Neil B. Metcalfe ◽  
Denis Réale ◽  
Pedro R. Peres-Neto

The trajectory of an animal's growth in early development has been shown to have long-term effects on a range of life-history traits. Although it is known that individual differences in behaviour may also be related to certain life-history traits, the linkage between early growth or development and individual variation in behaviour has received little attention. We used brief temperature manipulations, independent of food availability, to stimulate compensatory growth in juvenile three-spined sticklebacks Gasterosteus aculeatus . Here, we examine how these manipulated growth trajectories affected the sexual responsiveness of the male fish at the time of sexual maturation, explore associations between reproductive behaviour and investment and lifespan and test whether the perceived time stress (until the onset of the breeding season) influenced such trade-offs. We found a negative impact of growth rate on sexual responsiveness: fish induced (by temperature manipulation) to grow slowest prior to the breeding season were consistently quickest to respond to the presence of a gravid female. This speed of sexual responsiveness was also positively correlated with the rate of development of sexual ornaments and time taken to build a nest. However, after controlling for effects of growth rate, those males that had the greatest sexual responsiveness to females had the shortest lifespan. Moreover, the time available to compensate in size before the onset of the breeding season (time stress) affected the magnitude of these effects. Our results demonstrate that developmental perturbations in early life can influence mating behaviour, with long-term effects on longevity.


2018 ◽  
Vol 17 ◽  
pp. S46
Author(s):  
A. Macdougall ◽  
S.B. Carr ◽  
O. Archangelidi ◽  
R.H. Keogh ◽  
P. Cullinan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document