Faculty Opinions recommendation of Detecting cortical lesions in multiple sclerosis at 7 T using white matter signal attenuation.

Author(s):  
Nancy Richert ◽  
Francesca Bagnato
2012 ◽  
Vol 30 (7) ◽  
pp. 907-915 ◽  
Author(s):  
Katharine T. Bluestein ◽  
David Pitt ◽  
Steffen Sammet ◽  
Cherian Renil Zachariah ◽  
Usha Nagaraj ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 101938 ◽  
Author(s):  
Mário João Fartaria ◽  
Tobias Kober ◽  
Cristina Granziera ◽  
Meritxell Bach Cuadra

2008 ◽  
Vol 14 (9) ◽  
pp. 1214-1219 ◽  
Author(s):  
F Nelson ◽  
A Poonawalla ◽  
P Hou ◽  
JS Wolinsky ◽  
PA Narayana

Background Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. Methods 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. Results The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. Conclusion Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.


2012 ◽  
Vol 19 (4) ◽  
pp. 418-426 ◽  
Author(s):  
M Filippi ◽  
P Preziosa ◽  
E Pagani ◽  
M Copetti ◽  
S Mesaros ◽  
...  

Background: Pathologic and magnetic resonance imaging (MRI) studies have shown that cortical lesions (CLs) are a frequent finding in multiple sclerosis (MS). Objective: To quantify microstructural damage in CLs and normal appearing (NA) cortex in relapse-onset MS patients at different stages of the disease. Methods: Brain double inversion recovery (DIR), diffusion tensor (DT) MRI and 3D T1-weighted scans were acquired from 35 relapsing–remitting (RR) patients, 23 secondary progressive (SP) patients, 12 benign (B) MS patients and 41 healthy controls (HC). Diffusivity values in CLs, cortex, white matter (WM) lesions and normal-appearing white matter (NAWM) were assessed. Results: Compared to HC, MS patients had a significantly lower fractional anisotropy (FA) and higher mean diffusivity (MD) in the cortex and NAWM. CLs had higher FA vs HC cortex and vs patients’ cortex. Compared to RRMS patients, SPMS patients had higher WM lesion volume, higher MD in the cortex, and more severe damage to the NAWM and WM lesions. Compared to SPMS patients, BMS patients had lower MD and FA of CLs. Damage in other compartments was similar between SPMS and BMS patients. Damage in CLs had a high power to discriminate BMS from SPMS (area under the curve: 79–91%), with high specificity (85%), sensitivity (100%) and accuracy (90%). Conclusions: Microstructural imaging features of CLs differ from those of WM lesions and are likely to reflect neuronal damage and microglial activation. The nature and extent of CL damage can be used to help distinguish the different MS clinical phenotypes.


2013 ◽  
Vol 20 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Niraj Mistry ◽  
Rasha Abdel-Fahim ◽  
Olivier Mougin ◽  
Christopher Tench ◽  
Penny Gowland ◽  
...  

Background:Degeneration of central nervous system normal appearing white matter (NAWM) underlies disability and progression in multiple sclerosis (MS). Axon loss typifies NAWM degeneration.Objective:The objective of this paper is to assess correlation between cortical lesion load and magnetisation transfer ratio (MTR) of the NAWM in MS. This was in order to test the hypothesis that cortical lesions cause NAWM degeneration.Methods:Nineteen patients with MS underwent 7 Tesla magnetisation-prepared-rapid-acquisition-gradient-echo (MPRAGE), and magnetisation transfer ratio (MTR) brain magnetic resonance imaging (MRI). Cortical lesions were identified using MPRAGE and MTR images of cortical ribbons. White matter lesions (WMLs) were segmented using MPRAGE images. WML maps were subtracted from white matter volumes to produce NAWM masks. Pearson correlation was calculated for NAWM MTR vs cortical lesion load, and WML volumes.Results:Cortical lesion volumes and counts all had significant correlation with NAWM mean MTR. The strongest correlation was with cortical lesion volumes obtained using MTR images ( r = −0.6874, p = 0.0006). WML volume had no significant correlation with NAWM mean MTR ( r = −0.08706, p = 0.3615).Conclusion:Our findings are consistent with the hypothesis that cortical lesions cause NAWM degeneration. This implicates cortical lesions in the pathogenesis of NAWM axon loss, which underpins long-term disability and progression in MS.


2015 ◽  
Vol 43 (6) ◽  
pp. 1445-1454 ◽  
Author(s):  
Mário João Fartaria ◽  
Guillaume Bonnier ◽  
Alexis Roche ◽  
Tobias Kober ◽  
Reto Meuli ◽  
...  

2020 ◽  
Author(s):  
Silvia Messina ◽  
Romina Mariano ◽  
Adriana Roca-Fernandez ◽  
Ana Cavey ◽  
Maciej Jurynczyk ◽  
...  

Neuromyelitis optica associated with aquaporin-4-antibodies (NMOSD-AQP4) and myelin oligodentrocyte-glycoprotein antibody-associated disorder (MOGAD) have been recently recognised as different from multiple sclerosis. Although conventional MRI may help distinguish multiple sclerosis from antibody-mediated diseases, the use of quantitative and non-conventional imaging may give more pathological information and explain the clinical differences. We compared, using non-conventional imaging, brain MRI findings in 75 subjects in remission with NMOSD-AQP4, MOGAD, multiple sclerosis or healthy controls (HC). Volumetrics, white matter and cortical lesions, and tissue integrity measures using diffusion imaging, were analysed in the four groups along with their association with disability (expanded disability status scale [EDSS] and visual acuity). The volumetric analysis showed that, deep grey matter volumes were significantly lower in multiple sclerosis (p=0.0001) and MOGAD (p=0.02), compared to HC. Relapsing MOGAD had lower white matter, pallidus and hippocampus volumes than in monophasic (p<0.05). Optic chiasm volume was reduced only in NMOSD-AQP4 who had at least one episode of optic neuritis (ON) (NMOSD-AQP4-ON vs NMOSD-AQP4 p<0.001, HC p<0.001, MOGAD-ON p=0.04, multiple sclerosis-ON p=0.02) likely reflecting the recognised posterior location of NMOSD-AQP4-ON and its severity. Lesion volume was greatest in multiple sclerosis followed by MOGAD and in these two diseases, the lesion volume correlated with disease duration (multiple sclerosis R=0.46, p=0.05, MOGAD R=0.81, p<0.001), cortical thickness (multiple sclerosis R=-0.64, p=0.0042, MOGAD=-0.71, p=0.005) and deep grey matter volumes (multiple sclerosis R=-0.65, p=0.0034, MOGAD R=-0.93, p<0.001). Lesional-fractional anisotropy (FA) was reduced and mean diffusivity increased in all patients, but overall, FA was only reduced in the non-lesional tissue in multiple sclerosis (p=0.01), although focal reductions were noted in NMOSD-AQP4, reflecting mainly optic nerve and corticospinal tract pathways. Cortical/juxtacortical lesions were seen in a minority of MOGAD, while cortical/juxtacortical and purely cortical lesions were identified in the majority of multiple sclerosis and in none of the NMOSD-AQP4. Non-lesional FA in NMOSD-AQP4, lower white-matter volume and female sex in multiple sclerosis, and lower brainstem volume in MOGAD were the best predictors of EDSS disability (accounting for 46%, 49% and 19% respectively). Worse visual acuity associated with lower optic chiasm volume in NMOSD-AQP4 and lower thalamus volume in MOGAD (accounting for 58% and 35% respectively). Although MOGAD patients had good outcomes, deep grey matter atrophy was present. In contrast, NMOSD-AQP4 patients showed a relative sparing of deep grey matter volumes, despite greater residual disability as compared with MOGAD patients. NMOSD-AQP4 but not MOGAD patients showed reduced FA in non-lesional tissue.


2015 ◽  
Vol 21 (9) ◽  
pp. 1139-1150 ◽  
Author(s):  
Daniel M Harrison ◽  
Jiwon Oh ◽  
Snehashis Roy ◽  
Emily T Wood ◽  
Anna Whetstone ◽  
...  

Objective: Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. Methods: We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Results: Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing–remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Conclusions: Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS.


Author(s):  
Cheng‐Chih Hsiao ◽  
Nina L. Fransen ◽  
Aletta M.R. den Bosch ◽  
Kim I.M. Brandwijk ◽  
Inge Huitinga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document