Faculty Opinions recommendation of Conditional expression of Parkinson's disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1.

Author(s):  
Patrik Brundin ◽  
Jennifer Steiner
Author(s):  
Xin He ◽  
Yue Xie ◽  
Qiongping Zheng ◽  
Zeyu Zhang ◽  
Shanshan Ma ◽  
...  

Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.


2020 ◽  
Vol 21 (12) ◽  
pp. 4250
Author(s):  
Yuzuru Imai

Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by age-dependent motor dysfunction and degeneration of the midbrain dopaminergic neurons [...]


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Tahira Farooqui ◽  
Akhlaq A. Farooqui

Parkinson's disease (PD) is a neurodegenerative movement disorder of unknown etiology. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, depletion of dopamine in the striatum, abnormal mitochondrial and proteasomal functions, and accumulation ofα-synuclein that may be closely associated with pathological and clinical abnormalities. Increasing evidence indicates that both oxidative stress and inflammation may play a fundamental role in the pathogenesis of PD. Oxidative stress is characterized by increase in reactive oxygen species (ROS) and depletion of glutathione. Lipid mediators for oxidative stress include 4-hydroxynonenal, isoprostanes, isofurans, isoketals, neuroprostanes, and neurofurans. Neuroinflammation is characterized by activated microglial cells that generate proinflammatory cytokines, such as TNF-αand IL-1β. Proinflammatory lipid mediators include prostaglandins and platelet activating factor, together with cytokines may play a prominent role in mediating the progressive neurodegeneration in PD.


2021 ◽  
Author(s):  
Shamma Qarin ◽  
Sarah K Howlett ◽  
Joanne L Jones ◽  
Roger Barker

Dopaminergic (DA) cell replacement therapies are a promising experimental treatment for Parkinson’s disease and a number of different types of DA cell-based therapies have already been trialled in patients. To date the most successful have been allotransplants of foetal ventral midbrain but even then, the results have been inconsistent. This coupled to the ethical and logistical problems with using this tissue has meant that an alternative cell source has been sought of which human pluripotent stem cells (hPSC) sources have proven very attractive. Robust protocols for making mesencephalic DA progenitor cells from hPSC now exist and the first in-human clinical trials have or are about to start. However, while their safety and efficacy are well understood, relatively little is known about their immunogenicity and in this review, we briefly summarise this with reference mainly to the limited literature on human foetal dopaminergic cells.


2019 ◽  
Vol 30 (7) ◽  
pp. 709-727 ◽  
Author(s):  
Ava Nasrolahi ◽  
Fatemeh Safari ◽  
Mehdi Farhoudi ◽  
Afra Khosravi ◽  
Fereshteh Farajdokht ◽  
...  

Abstract Parkinson’s disease (PD) is a progressive neurological disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. However, although 200 years have now passed since the primary clinical description of PD by James Parkinson, the etiology and mechanisms of neuronal loss in this disease are still not fully understood. In addition to genetic and environmental factors, activation of immunologic responses seems to have a crucial role in PD pathology. Intraneuronal accumulation of α-synuclein (α-Syn), as the main pathological hallmark of PD, potentially mediates initiation of the autoimmune and inflammatory events through, possibly, auto-reactive T cells. While current therapeutic regimens are mainly used to symptomatically suppress PD signs, application of the disease-modifying therapies including immunomodulatory strategies may slow down the progressive neurodegeneration process of PD. The aim of this review is to summarize knowledge regarding previous studies on the relationships between autoimmune reactions and PD pathology as well as to discuss current opportunities for immunomodulatory therapy.


Sign in / Sign up

Export Citation Format

Share Document