scholarly journals Faculty Opinions recommendation of Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor.

Author(s):  
Gerald Zamponi
1998 ◽  
Vol 89 (3) ◽  
pp. 693-698. ◽  
Author(s):  
Richard L. Brooksbank ◽  
Margaret E. Badenhorts ◽  
Hyam Isaacs ◽  
Nerina Savage

Background FKBP12 is a protein that is closely associated with the ryanodine receptor type 1 of skeletal muscle and modulates Ca2+ release by the channel. The immunosuppressants FK506 and rapamycin both bind to FKBP12 and in turn dissociate the protein from the ryanodine receptor. By treating healthy human skeletal muscle strips with FK506 or rapamycin and then subjecting the strips to the caffeine-halothane contracture test, this study determined that FK506 and rapamycin alter the sensitivity of the muscle strip to halothane, caffeine, or both. Methods Skeletal muscle strips from 10 healthy persons were incubated in Krebs medium equilibrated with a 95% oxygen and 5% carbon dioxide mixture, which contained either 12 microM FK506 (n = 8) or 12 microM rapamycin (n = 6), for 15 min at 37 degrees C. The strips were subjected to the caffeine-halothane contracture test for malignant hyperthermia according to the European Malignant Hyperthermia Group protocol. Results Treatment of normal skeletal muscle strips with FK506 and rapamycin resulted in halothane-induced contractures of 0.44+/-0.16 g and 0.6+/-0.49 g, respectively, at 2% halothane. Conclusions The results obtained show that pre-exposure of healthy skeletal muscle strips to either FK506 or rapamycin is sufficient to give rise to halothane-induced contractures. This is most likely caused by destabilization of Ca2+ release by the ryanodine receptor as a result of the dissociation of FKBP12. This finding suggests that a mutation in FKBP12 or changes in its capacity to bind to the ryanodine receptor could alter the halothane sensitivity of the skeletal muscle ryanodine receptor and thereby predispose the person to malignant hyperthermia.


2005 ◽  
Vol 288 (6) ◽  
pp. C1222-C1230 ◽  
Author(s):  
Takashi Murayama ◽  
Toshiharu Oba ◽  
Shigeki Kobayashi ◽  
Noriaki Ikemoto ◽  
Yasuo Ogawa

Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Toshiko Yamazawa

Ca2+-induced Ca2+ release (CICR) is mediated by ryanodine receptors, a Ca2+ release channel in the sarcoplasmic/endoplasmic reticulum (SR/ER), and plays an important role in various tissues. Type 1 ryanodine receptor (RYR1) plays a key role during excitation–contraction coupling of skeletal muscle. Mutations in RYR1 overactivate the channel to cause malignant hyperthermia (MH). MH is a serious complication characterized by skeletal muscle rigidity and elevated body temperature in response to commonly used inhalational anesthetics. Thus far, >300 mutations in the RYR1 gene have been reported in patients with MH. Some heat stroke triggered by exercise or environmental heat stress is also related to MH mutations in the RYR1 gene. The only drug approved for ameliorating the symptoms of MH is dantrolene, which has been first developed in the 1960s as a muscle relaxant. However, dantrolene has several disadvantages for clinical use: poor water solubility, which makes rapid preparation difficult in emergency situations, and long plasma half-life, which causes long-lasting side effects such as muscle weakness. Here, we show that a novel RYR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (compound 1 [Cpd1]), effectively rescues MH and heat stroke in new mouse model (RYR1-p.R2509C) relevant to MH. Cpd1 has great advantages of higher water solubility and shorter plasma half-life compared with dantrolene. Our data suggest that Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RYR1 mutations. Finally, we have recently identified that heat directly activates RYR1, which induces Ca2+ release from intracellular stores. Our results provide direct evidence that heat induces Ca2+ release (HICR) from the SR through the mutants rather than wild type RYR1, causing an immediate rise in the cytosolic Ca2+ concentration.


2008 ◽  
Vol 22 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Takahiro Tanabe ◽  
Makoto Fukusaki ◽  
Yoshiaki Terao ◽  
Kazunori Yamashita ◽  
Koji Sumikawa ◽  
...  

2019 ◽  
Vol 170 (2) ◽  
pp. 509-524
Author(s):  
Kim M Truong ◽  
Gennady Cherednichenko ◽  
Isaac N Pessah

Abstract Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p′-DDT, p,p′-DDT, o,p′-DDE, and p,p′-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01–10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p′-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1–10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p′-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.


2004 ◽  
Vol 286 (4) ◽  
pp. C821-C830 ◽  
Author(s):  
Esther M. Gallant ◽  
James Hart ◽  
Kevin Eager ◽  
Suzanne Curtis ◽  
Angela F. Dulhunty

Enhanced sensitivity to caffeine is part of the standard tests for susceptibility to malignant hyperthermia (MH) in humans and pigs. The caffeine sensitivity of skeletal muscle contraction and Ca2+ release from the sarcoplasmic reticulum is enhanced, but surprisingly, the caffeine sensitivity of purified porcine ryanodine receptor Ca2+-release channels (RyRs) is not affected by the MH mutation (Arg615Cys). In contrast, we show here that native malignant hyperthermic pig RyRs (incorporated into lipid bilayers with RyR-associated lipids and proteins) were activated by caffeine at 100- to 1,000-fold lower concentrations than native normal pig RyRs. In addition, the results show that the mutant ryanodine receptor channels were less sensitive to high-affinity activation by a peptide (CS) that corresponds to a part of the II–III loop of the skeletal dihydropyridine receptor (DHPR). Furthermore, subactivating concentrations of peptide CS enhanced the response of normal pig and rabbit RyRs to caffeine. In contrast, the caffeine sensitivity of MH RyRs was not enhanced by the peptide. These novel results showed that in MH-susceptible pig muscles 1) the caffeine sensitivity of native RyRs was enhanced, 2) the sensitivity of RyRs to a skeletal II–III loop peptide was depressed, and 3) an interaction between the caffeine and peptide CS activation mechanisms seen in normal RyRs was lost.


Sign in / Sign up

Export Citation Format

Share Document