signaling molecule
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 124)

H-INDEX

71
(FIVE YEARS 10)

mBio ◽  
2022 ◽  
Author(s):  
Beate Schwer ◽  
Angad Garg ◽  
Ana M. Sanchez ◽  
Mindy A. Bernstein ◽  
Bradley Benjamin ◽  
...  

Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis.


Author(s):  
Anja Baufeld ◽  
Jens Vanselow

Abstractl-lactate acts as a signaling molecule in bovine granulosa cells (GCs). The initiated alterations depend on the transport of l-lactate into the cells via monocarboxylate transporters. In the present study, we further elucidated the intracellular actions of l-lactate and tested whether the PKA signaling pathway is involved. Therefore, we treated cultured bovine GCs with l-lactate and PKA inhibitors H-89 and KT5720, and with an activator of PKA, 6-Bnz-cAMP. l-lactate treatment resulted in decreased estradiol production and downregulation of CYP19A1, FSHR, and LHCGR as well as in the upregulation of the markers of early luteinization PTX3, RGS2, and VNN2. These specific l-lactate effects were almost completely abolished by pre-treatment of the GCs with both inhibitors of PKA signaling. In addition, also the l-lactate-induced upregulation of LDHA and of the monocarboxylate transporters SLC16A1 and SLC16A7 was abolished after PKA inhibition. An activation of the PKA with 6-Bnz-cAMP revealed similar effects on the gene expression like l-lactate alone. In summary, the presented data demonstrate that l-lactate-induced effects on GCs are mediated via PKA signaling thus supporting the role of l-lactate as signaling molecule during the folliculo-luteal transition.


2022 ◽  
Author(s):  
Christopher Schubert ◽  
Gottfried Unden

The C4-dicarboxylates (C4-DC) L-aspartate and L-malate have been identified as playing an important role in the colonization of mammalian intestine by enteric bacteria, such as Escherichia coli and Salmonella Typhimurium, and succinate as a signaling molecule for host–enteric bacteria interaction. Thus, endogenous and exogenous fumarate respiration and related functions are required for efficient initial growth of the bacteria. L-aspartate represents a major substrate for fumarate respiration in the intestine and a high-quality substrate for nitrogen assimilation. During nitrogen assimilation, DcuA catalyzes an L-aspartate/fumarate antiport and serves as a nitrogen shuttle for the net uptake of ammonium only, whereas DcuB acts as a redox shuttle that catalyzes the L-malate/succinate antiport during fumarate respiration. The C4-DC two-component system DcuS-DcuR is active in the intestine and responds to intestinal C4-DC levels. Moreover, in macrophages and in mice, succinate is a signal that promotes virulence and survival of S . Tm and pathogenic E. coli . On the other hand, intestinal succinate is an important signaling molecule for the host and activates response and protective programs. Therefore, C4-DCs play a major role in supporting colonization of enteric bacteria and as signaling molecules for the adaptation of host physiology.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
Khaled A. Selim ◽  
Michael Haffner ◽  
Markus Burkhardt ◽  
Oliver Mantovani ◽  
Niels Neumann ◽  
...  

Author(s):  
Eman M. El-labbad ◽  
Xingyue Ji ◽  
Khaled A.M. Abouzid ◽  
Binghe Wang

SO2 is emerging as a possible endogenous signaling molecule in mammals. In addition, SO2 has also shown pharmacological effects, presenting SO2 as a promising potential therapeutic agent. The past decade has witnessed steady advances in the development of small molecule-based SO2 prodrugs/donors with varied release mechanisms. Herein, we summarize various strategies employed for SO2 prodrug design. The remaining challenges and issues will also be discussed.


mBio ◽  
2021 ◽  
Author(s):  
Alice H. Tischler ◽  
Michael E. Vanek ◽  
Natasha Peterson ◽  
Karen L. Visick

Biofilm formation and motility are often critical behaviors for bacteria to colonize a host organism. Vibrio fischeri is the exclusive colonizer of its host’s symbiotic organ and requires both biofilm formation and motility to initiate successful colonization, providing a relatively simple model to explore complex behaviors. In this study, we determined how the environmental signal calcium alters bacterial behavior through production of the signaling molecule c-di-GMP.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 334
Author(s):  
Taehui Kwon ◽  
Hee Young Mun ◽  
Sunghwa Seo ◽  
Areum Yu ◽  
Chongmok Lee ◽  
...  

A series of gold (Au) nanostructures, having different morphologies, were fabricated for amperometric selective detection of carbon monoxide (CO), a biologically important signaling molecule. Au layers were electrodeposited from a precursor solution of 7 mM HAuCl4 with a constant deposition charge (0.04 C) at various deposition potentials. The obtained Au nanostructures became rougher and spikier as the deposition potential lowered from 0.45 V to 0.05 V (vs. Ag/AgCl). As prepared Au layers showed different hydrophobicity: The sharper morphology, the greater hydrophobicity. The Au deposit formed at 0.05 V had the sharpest shape and the greatest surface hydrophobicity. The sensitivity of an Au deposit for amperometric CO sensing was enhanced as the Au surface exhibits higher hydrophobicity. In fact, CO selectivity over common electroactive biological interferents (L-ascorbic acid, 4-acetamidophenol, 4-aminobutyric acid and nitrite) was improved eminently once the Au deposit became more hydrophobic. The most hydrophobic Au was also confirmed to sense CO exclusively without responding to nitric oxide, another similar gas signaling molecule, in contrast to a hydrophobic platinum (Pt) counterpart. This study presents a feasible strategy to enhance the sensitivity and selectivity for amperometric CO sensing via the fine control of Au electrode nanostructures.


Sign in / Sign up

Export Citation Format

Share Document