Faculty Opinions recommendation of Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity.

Author(s):  
Bryan Williams
2014 ◽  
Vol 53 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Hao Huang ◽  
Elton Zeqiraj ◽  
Beihua Dong ◽  
Babal Kant Jha ◽  
Nicole M. Duffy ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 14
Author(s):  
Susan R. Weiss

The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, virus replication and spread, leading to apoptotic cell death. Endogenous host dsRNA, which accumulates in the absence of adenosine deaminase acting on RNA (ADAR)1, can also activate RNase L and lead to apoptotic cell death. RNase L activation and antiviral activity during infections with several types of viruses in human and bat cells is dependent on OAS3 but independent of virus-induced interferon (IFN) and, thus, RNase L can be activated even in the presence of IFN antagonists. Differently from other human viruses examined, Zika virus is resistant to the antiviral activity of RNase L and instead utilizes RNase L to enhance its replication factories to produce more infectious virus. Some betacoronaviruses antagonize RNase L activation by expressing 2′,5′-phosphodiesterases (PDEs) that cleave 2-5A and thereby antagonize activation of RNase L. The best characterized of these PDEs is the murine coronavirus (MHV) NS2 accessory protein. Enzymatically active NS2 is required for replication in myeloid cells and in the liver. Interestingly, while wild type mice clear MHV from the liver by 7–10 days post-infection, RNase L knockout mice fail to effectively clear MHV, probably due to diminished apoptotic death of infected cells. We suggest that RNase L antiviral activity stems from direct cleavage of viral genomes and cessation of protein synthesis as well as through promoting death of infected cells, limiting the spread of virus. Importantly, OASs are pattern recognition receptors and the OAS–RNase L pathway is a primary innate response pathway to viruses, capable of early response, coming into play before IFN is induced or when the virus shuts down IFN signaling.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Yize Li ◽  
Beihua Dong ◽  
Zuzhang Wei ◽  
Robert H. Silverman ◽  
Susan R. Weiss

ABSTRACT Bats are reservoirs for many RNA viruses that are highly pathogenic in humans yet relatively apathogenic in the natural host. It has been suggested that differences in innate immunity are responsible. The antiviral OAS-RNase L pathway is well characterized in humans, but there is little known about its activation and antiviral activity in bats. During infection, OASs, upon sensing double-stranded RNA (dsRNA), produce 2′-5′ oligoadenylates (2-5A), leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Humans encode three active OASs (OAS1 to -3). Analysis of the Egyptian Rousette bat genome combined with mRNA sequencing from bat RoNi/7 cells revealed three homologous OAS proteins. Interferon alpha treatment or viral infection induced all three OAS mRNAs, but RNase L mRNA is constitutively expressed. Sindbis virus (SINV) or vaccinia virus (VACVΔE3L) infection of wild-type (WT) or OAS1-KO (knockout), OAS2-KO, or MAVS-KO RoNi/7 cells, but not RNase L-KO or OAS3-KO cells, induces robust RNase L activation. SINV replication is 100- to 200-fold higher in the absence of RNase L or OAS3 than in WT cells. However, MAVS-KO had no detectable effect on RNA degradation or replication. Thus, in RoNi/7 bat cells, as in human cells, activation of RNase L during infection and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required for the activation of RNase L and restriction of infection. Our findings indicate that OAS proteins serve as pattern recognition receptors (PRRs) to recognize viral dsRNA and that this pathway is a primary response to virus rather than a secondary effect of interferon signaling. IMPORTANCE Many RNA viruses that are highly pathogenic in humans are relatively apathogenic in their bat reservoirs, making it important to compare innate immune responses in bats to those well characterized in humans. One such antiviral response is the OAS-RNase L pathway. OASs, upon sensing dsRNA, produce 2-5A, leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Analysis of Egyptian Rousette bat sequences revealed three OAS genes expressing OAS1, OAS2, and OAS3 proteins. Interferon treatment or viral infection induces all three bat OAS mRNAs. In these bat cells as in human cells, RNase L activation and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required. Importantly, our findings indicate the OAS-RNase L system is a primary response to virus rather than a secondary effect of interferon signaling and therefore can be activated early in infection or while interferon signaling is antagonized.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xianghe Meng ◽  
Darong Yang ◽  
Rong Yu ◽  
Haizhen Zhu

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-αsynergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.


Cytokine ◽  
2011 ◽  
Vol 56 (1) ◽  
pp. 55
Author(s):  
H. Kristiansen ◽  
M.T. Madsen ◽  
H.H. Gad ◽  
K. Horan ◽  
S.R. Paludan ◽  
...  

Cytokine ◽  
2010 ◽  
Vol 52 (1-2) ◽  
pp. 65
Author(s):  
Helle Kristiansenp ◽  
Susanne Vends ◽  
Karthiga Thavachelvam ◽  
Thomas B. Steffensen ◽  
Søren R. Paludan ◽  
...  

2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Jillian N. Whelan ◽  
Yize Li ◽  
Robert H. Silverman ◽  
Susan R. Weiss

SUMMARYThere is currently no knowledge of how the emerging human pathogen Zika virus (ZIKV) interacts with the antiviral endoribonuclease L (RNase L) pathway during infection. Since activation of RNase L during infection typically limits virus production dramatically, we used CRISPR-Cas9 gene editing technology to knockout (KO) targeted host genes involved in the RNase L pathway to evaluate the effects of RNase L on ZIKV infection in human A549 cells. RNase L was activated in response to ZIKV infection, which degraded ZIKV genomic RNA. Surprisingly, despite viral genome reduction, RNase L activity did not reduce ZIKV infectious titers. In contrast, both the flavivirus dengue virus and the alphavirus Sindbis virus replicated to significantly higher titers in RNase L KO cells compared to wild-type (WT) cells. Using MAVS/RNase L double KO cells, we demonstrated that the absence of increased ZIKV production in RNase L KO cells was not due to compensation by enhanced type I interferon transcripts to thus inhibit virus production. Finally, when synthetic double-stranded RNA was detected by OAS3 to induce RNase L antiviral activity prior to ZIKV infection, we observed reduced ZIKV replication factory formation, as well as a 42-fold reduction in virus yield in WT but not RNase L KO cells. This study proposes that ZIKV evades RNase L antiviral activity by generating a viral genome reservoir protected from RNase L cleavage during early infection, allowing for sufficient virus production before RNase L activation is detectable.IMPORTANCEWith the onset of the 2015 ZIKV outbreak, ZIKV pathogenesis has been of extreme global public health interest, and a better understanding of interactions with the host would provide insight into molecular mechanisms driving the severe neurological outcomes of ZIKV disease. Here is the initial report on the relationship between ZIKV and the host oligoadenylate synthetase-RNase L (OAS-RNase L) system, a potent antiviral pathway effective at restricting replication of diverse viruses. Our study elucidated a unique mechanism whereby ZIKV production is impervious to antiviral RNase L activity, through a mechanism of viral RNA protection that is not mimicked during infection with numerous other RNase L-activating viruses, thus identifying a distinct replication strategy potentially important for ZIKV pathogenesis.


2002 ◽  
Vol 76 (6) ◽  
pp. 2617-2621 ◽  
Author(s):  
Luca G. Guidotti ◽  
Amber Morris ◽  
Heike Mendez ◽  
Rick Koch ◽  
Robert H. Silverman ◽  
...  

ABSTRACT We previously showed that the intrahepatic induction of cytokines such as alpha/beta interferon (IFN-α/β) and gamma interferon (IFN-γ) inhibits hepatitis B virus (HBV) replication noncytopathically in the livers of transgenic mice. The intracellular pathway(s) responsible for this effect is still poorly understood. To identify interferon (IFN)-inducible intracellular genes that could play a role in our system, we crossed HBV transgenic mice with mice deficient in IFN regulatory factor 1 (IRF-1), the double-stranded RNA-activated protein kinase (PKR), or RNase L (RNase L) (IRF-1−/−, PKR−/−, or RNase L−/− mice, respectively), three well-characterized IFN-inducible genes that mediate antiviral activity. We showed that unmanipulated IRF-1−/− or PKR−/− transgenic mice replicate HBV in the liver at slightly higher levels than the respective controls, suggesting that both IRF-1 and PKR individually appear to mediate signals that modulate HBV replication under basal conditions. These same animals were responsive to the antiviral effects of the IFN-α/β inducer poly(I-C) or recombinant murine IFN-γ, suggesting that under these conditions, either the IRF-1 or the PKR genes can mediate the antiviral activity of the IFNs or other IFN-inducible genes mediate the antiviral effects. Finally, RNase L−/− transgenic mice were undistinguishable from controls under basal conditions and after poly(I-C) or IFN-γ administration, suggesting that RNase L does not modulate HBV replication in this model.


Sign in / Sign up

Export Citation Format

Share Document