scholarly journals EPSTI1 Is Involved in IL-28A-Mediated Inhibition of HCV Infection

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xianghe Meng ◽  
Darong Yang ◽  
Rong Yu ◽  
Haizhen Zhu

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-αsynergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.

Author(s):  
А.Г. Емельянова ◽  
М.В. Никифорова ◽  
Е.С. Дон ◽  
Н.Р. Махмудова ◽  
И.Н. Фалынскова ◽  
...  

Цель исследования - изучение возможного прямого влияния препарата «Анаферон детский» на жизненный цикл вируса гриппа А в процессе развития инфекции, а также дозозависимости противовирусного эффекта in vitro . Методика. Исследование противовирусной активности препарата «Анаферон детский» in vitro было проведено с использованием культуры клеток MDCK (Madin Darby canine kidney) и эталонных штаммов вируса гриппа A (H1N1) pdm09: A/California/07/09 и А/California/04/09, полученных от ВОЗ. Использовались методы оценки подавления Анафероном детским вирусной репликации (по результатам иммуноферментного анализа по определению экспрессии внутренних белков NP и M1 вируса гриппа А) и его влияние на ультраструктурные особенности морфогенеза вируса гриппа методом электронной микроскопии. В качестве положительного контроля был использован Озельтамивир карбоксилат в концентрации 10 мкМ. Для мониторинга валидности экспериментальной модели в работе использовали клетки, зараженные вирусом без добавления экспериментальных образцов (контроль вируса), а также интактные клетки (клеточный контроль). Результаты. В ходе исследования показан дозозависимый противовирусный эффект препарата «Анаферон детский» для 3 тестируемых разведений - 1/8, 1/12, 1/16. Методом электронной микроскопии показано, что применение препарата «Анаферон детский» при сравнении с контрольным образцом влияло на процесс почкования вирионов. Заключение. Впервые показана дозозависимость противовирусного действия препарата «Анаферон детский», а также подтверждена его эффективность в отношении двух штаммов вируса пандемического гриппа А/H1N1. Документировано, что применение препарата «Анаферон детский» нарушает жизненный цикл вируса гриппа А. Механизмы развития такого эффекта требуют дополнительного изучения, однако можно предположить их связь с ИФН-индуцирующими свойствами препарата «Анаферон детский», так как было показано, что в начале лечения вирусной инфекции препарат вызывает индукцию синтеза белков системы интерферонов. The aim of this study was to evaluate a possible direct effect of Anaferon for Children on the life cycle of influenza A virus during infection development and a dose response of the antiviral effect in vitro. Methods. The in vitro antiviral activity of Anaferon for Children was studied on cultured MDCK cells and reference strains of influenza virus A (H1N1) pdm09: A/California/07/09 and A/California/04/09, both from the WHO. Inhibition of viral replication by Anaferon for Children and its effect on ultrastructural features of the influenza morphogenesis were evaluated using electron microscopy. Results. The study demonstrated a dose dependence of Anaferon for Children antiviral activity for three dilutions - 1/8, 1/12, and 1/16. Anaferon for Children affected the process of virion budding as compared to placebo. Conclusion. The study showed that the anti-influenza action of Anaferon for Children was dose-dependent and confirmed that this drug was effective against two strains of pandemic A/H1N1 influenza. Furthermore, Anaferon for children disrupted one or several stages of the virus life cycle.


2020 ◽  
Author(s):  
S.E. Cook ◽  
H. Vogel ◽  
D. Castillo ◽  
M. Olsen ◽  
N. Pedersen ◽  
...  

AbstractFeline infectious peritonitis (FIP), caused by a genetic mutant of feline enteric coronavirus known as FIPV, is a highly fatal disease of cats with no currently available vaccine or FDA-approved cure. Dissemination of FIPV in affected cats results in a range of clinical signs including cavitary effusions, anorexia, fever and lesions of pyogranulomatous vasculitis and peri-vasculitis with or without central nervous system and/or ocular involvement. There is a critical need for effective and approved antiviral therapies against coronaviruses including FIPV and zoonotic coronaviruses such as SARS-CoV-2, the cause of COVID-19. With regards to SARS-CoV-2, preliminary evidence suggests that there may be potential clinical and pathological overlap with feline coronaviral disease including enteric and neurological involvement in some cases. We have screened 89 putative antiviral compounds and have identified 25 compounds with antiviral activity against FIPV, representing a variety of drug classes and mechanisms of antiviral action. Based upon successful combination treatment strategies for human patients with HIV or hepatitis C virus infections, we have identified combinations of drugs targeting different steps of the FIPV life cycle resulting in synergistic antiviral effect. Translationally, we suggest that a combined anticoronaviral therapy (cACT) with multiple mechanisms of action and penetration of all potential anatomic sites of viral infection should be applied towards other challenging to treat coronaviruses, like SARS-CoV-2.Author summaryWe have screened 89 compounds in vitro for antiviral activity against FIPV. The putative antiviral activity of these compounds was either purported to be a direct effect on viral proteins involved in viral replication or an indirect inhibitory effect on normal cellular pathways usurped by FIPV to aid viral replication. Twenty-five of these compounds were found to have significant antiviral activity. Certain combinations of these compounds were determined to be superior to monotherapy alone.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2021 ◽  
Author(s):  
Dong-Kyun Ryu ◽  
Hye-Min Woo ◽  
Bobin Kang ◽  
Hanmi Noh ◽  
Jong-In Kim ◽  
...  

The Delta variant originally from India is rapidly spreading across the world and causes to resurge infections of SARS-CoV-2. We previously reported that CT-P59 presented its in vivo potency against Beta and Gamma variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on the Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal study. CT-P59 showed reduced antiviral activity but enabled neutralization against Delta, Epsilon, and Kappa variants in cells. In line with in vitro results, the mouse challenge experiment with the Delta variant substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against the Delta variant infection, hinting that CT-P59 has therapeutic potency for patients infected with Delta and its associated variants.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Yize Li ◽  
Beihua Dong ◽  
Zuzhang Wei ◽  
Robert H. Silverman ◽  
Susan R. Weiss

ABSTRACT Bats are reservoirs for many RNA viruses that are highly pathogenic in humans yet relatively apathogenic in the natural host. It has been suggested that differences in innate immunity are responsible. The antiviral OAS-RNase L pathway is well characterized in humans, but there is little known about its activation and antiviral activity in bats. During infection, OASs, upon sensing double-stranded RNA (dsRNA), produce 2′-5′ oligoadenylates (2-5A), leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Humans encode three active OASs (OAS1 to -3). Analysis of the Egyptian Rousette bat genome combined with mRNA sequencing from bat RoNi/7 cells revealed three homologous OAS proteins. Interferon alpha treatment or viral infection induced all three OAS mRNAs, but RNase L mRNA is constitutively expressed. Sindbis virus (SINV) or vaccinia virus (VACVΔE3L) infection of wild-type (WT) or OAS1-KO (knockout), OAS2-KO, or MAVS-KO RoNi/7 cells, but not RNase L-KO or OAS3-KO cells, induces robust RNase L activation. SINV replication is 100- to 200-fold higher in the absence of RNase L or OAS3 than in WT cells. However, MAVS-KO had no detectable effect on RNA degradation or replication. Thus, in RoNi/7 bat cells, as in human cells, activation of RNase L during infection and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required for the activation of RNase L and restriction of infection. Our findings indicate that OAS proteins serve as pattern recognition receptors (PRRs) to recognize viral dsRNA and that this pathway is a primary response to virus rather than a secondary effect of interferon signaling. IMPORTANCE Many RNA viruses that are highly pathogenic in humans are relatively apathogenic in their bat reservoirs, making it important to compare innate immune responses in bats to those well characterized in humans. One such antiviral response is the OAS-RNase L pathway. OASs, upon sensing dsRNA, produce 2-5A, leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Analysis of Egyptian Rousette bat sequences revealed three OAS genes expressing OAS1, OAS2, and OAS3 proteins. Interferon treatment or viral infection induces all three bat OAS mRNAs. In these bat cells as in human cells, RNase L activation and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required. Importantly, our findings indicate the OAS-RNase L system is a primary response to virus rather than a secondary effect of interferon signaling and therefore can be activated early in infection or while interferon signaling is antagonized.


2013 ◽  
Vol 58 (2) ◽  
pp. 647-653 ◽  
Author(s):  
Huiling Yang ◽  
Margaret Robinson ◽  
Amoreena C. Corsa ◽  
Betty Peng ◽  
Guofeng Cheng ◽  
...  

ABSTRACTGS-9451 is a selective hepatitis C virus (HCV) NS3 protease inhibitor in development for the treatment of genotype 1 (GT1) HCV infection. Key preclinical properties of GS-9451, includingin vitroantiviral activity, selectivity, cross-resistance, and combination activity, as well as pharmacokinetic properties, were determined. In multiple GT1a and GT1b replicon cell lines, GS-9451 had mean 50% effective concentrations (EC50s) of 13 and 5.4 nM, respectively, with minimal cytotoxicity; similar potency was observed in chimeric replicons encoding the NS3 protease gene of GT1 clinical isolates. GS-9451 was less active in GT2a replicon cells (EC50= 316 nM). Additive to synergisticin vitroantiviral activity was observed when GS-9451 was combined with other agents, including alpha interferon, ribavirin, and the polymerase inhibitors GS-6620 and tegobuvir (GS-9190), as well as the NS5A inhibitor ledipasvir (GS-5885). GS-9451 retained wild-type activity against multiple classes of NS5B and NS5A inhibitor resistance mutations. GS-9451 was stable in hepatic microsomes and hepatocytes from human and three other tested species. Systemic clearance was low in dogs and monkeys but high in rats. GS-9451 showed good oral bioavailability in all three species tested. In rats, GS-9451 levels were ∼40-fold higher in liver than plasma after intravenous dosing, and elimination of GS-9451 was primarily through biliary excretion. Together, these results are consistent with the antiviral activity observed in a recent phase 1b study. The results ofin vitrocross-resistance and combination antiviral assays support the ongoing development of GS-9451 in combination with other agents for the treatment of chronic HCV infection.


1997 ◽  
Vol 186 (7) ◽  
pp. 1077-1085 ◽  
Author(s):  
Khalid S.A. Khabar ◽  
Fahad Al-Zoghaibi ◽  
Mohammed N. Al-Ahdal ◽  
Tsugiya Murayama ◽  
Mohammed Dhalla ◽  
...  

Interferon (IFN) exhibits a potent antiviral activity in vitro and plays a major role in the early defense against viruses. Like IFN, the proinflammatory chemokine, interleukin (IL)-8, is induced by viruses and appears in circulation during viral infections. In an in vitro cytopathic effect assay for IFN, we found that IL-8 can inhibit IFN-α activity in a dose-dependent manner. This action was reversed by specific monoclonal antibodies to IL-8. The chemokine was able to attenuate the IFN-mediated inhibition of viral replication as determined by measuring infectious virus yield. IL-8 also diminished the ability of IFN to inhibit an early stage of viral replication since IL-8 attenuated the inhibition of the formation of viral proteins. It appeared that IL-8 interfered with a late rather than an early step of IFN-mediated pathway such as early gene expression. The IL-8 inhibitory action on IFN-α antiviral activity was associated with reduced 2′,5′-A oligoadenylate synthetase activity, a pathway well correlative with the anti– encephalomyocarditis virus action of IFN-α. Understanding pathways that antagonize IFN action may lead to novel approaches to potentiate endogenous and therapeutic IFN.


2013 ◽  
Vol 125 (9) ◽  
pp. 439-448 ◽  
Author(s):  
Yuan-Lung Cheng ◽  
Keng-Hsueh Lan ◽  
Wei-Ping Lee ◽  
Szu-Han Tseng ◽  
Li-Rong Hung ◽  
...  

HCV (hepatitis C virus) infection affects an estimated 180 million people in the world's population. Adverse effects occur frequently with current standard treatment of interferon and ribavirin, while resistance of new direct anti-viral agents, NS3 protease inhibitors, is a major concern because of their single anti-HCV mechanism against the viral factor. New anti-viral agents are needed to resolve the problems. Amiodarone, an anti-arrhythmic drug, has recently been shown to inhibit HCV infection in vitro. The detailed mechanism has yet to be clarified. The aim of the present study was to elucidate the molecular mechanism of the inhibitory effect of amiodarone on HCV life cycle. The effect of amiodarone on HCV life cycle was investigated in Huh-7.5.1 cells with HCVcc (cell culture-derived HCV), HCVpp (HCV pseudoviral particles), sub-genomic replicons, IRES (internal ribosomal entry site)-mediated translation assay, and intracellular and extracellular infectivity assays. The administration of amiodarone appeared to inhibit HCV entry independent of genotypes, which was attributed to the down-regulation of CD81 receptor expression. The inhibitory effect of amiodarone also manifested in the HCV assembly step, via the suppression of MTP (microsomal triacylglycerol transfer protein) activity. Amiodarone revealed no effects on HCV replication and translation. With the host factor-targeting characteristics, amiodarone may be an attractive agent for the treatment of HCV infection.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1602
Author(s):  
Marina Plotnikova ◽  
Alexey Lozhkov ◽  
Ekaterina Romanovskaya-Romanko ◽  
Irina Baranovskaya ◽  
Mariia Sergeeva ◽  
...  

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: ‘preventive’ (pretreatment); ‘preventive/therapeutic’ (pre/post); and ‘therapeutic’ (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the ‘preventive’ and ‘preventive/therapeutic’ regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Sign in / Sign up

Export Citation Format

Share Document