Faculty Opinions recommendation of Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.

Author(s):  
Norma A Bobadilla ◽  
Jonatan Barrera Chimal
2014 ◽  
Vol 21 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Hyun Mi Kang ◽  
Seon Ho Ahn ◽  
Peter Choi ◽  
Yi-An Ko ◽  
Seung Hyeok Han ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Qingfeng Rong ◽  
Baosheng Han ◽  
Yafeng Li ◽  
Haizhen Yin ◽  
Jing Li ◽  
...  

Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.


2017 ◽  
Vol 92 (1) ◽  
pp. 469-485 ◽  
Author(s):  
Lili Cheng ◽  
Mengmeng Ge ◽  
Zhou Lan ◽  
Zhilong Ma ◽  
Wenna Chi ◽  
...  

2019 ◽  
Vol 30 (12) ◽  
pp. 2384-2398 ◽  
Author(s):  
Takuto Chiba ◽  
Kevin D. Peasley ◽  
Kasey R. Cargill ◽  
Katherine V. Maringer ◽  
Sivakama S. Bharathi ◽  
...  

BackgroundThe primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined.MethodsWe subjected male Sirt5-deficient mice (either +/− or −/−) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2.ResultsSirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5−/−) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5−/− mice, Sirt5−/− mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5−/− proximal tubular epithelial cells.ConclusionsOur findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.


2018 ◽  
Vol 24 ◽  
pp. 1484-1492 ◽  
Author(s):  
Jiye Sun ◽  
Xuemei Chen ◽  
Ting Liu ◽  
Xushun Jiang ◽  
Yue Wu ◽  
...  

2019 ◽  
Vol 458 (1-2) ◽  
pp. 113-124 ◽  
Author(s):  
Alyssa Cobbs ◽  
Xiaoming Chen ◽  
Yuanyuan Zhang ◽  
Jasmine George ◽  
Ming-bo Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document