Faculty Opinions recommendation of Clinical Improvement in a Treatment-Resistant Patient With Schizophrenia Treated With Deep Brain Stimulation.

Author(s):  
Luc Mallet
2016 ◽  
Vol 80 (8) ◽  
pp. e69-e70 ◽  
Author(s):  
Iluminada Corripio ◽  
Salvador Sarró ◽  
Peter J. McKenna ◽  
Joan Molet ◽  
Enric Álvarez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

AbstractDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


Neurosurgery ◽  
2011 ◽  
Vol 68 (3) ◽  
pp. 738-743 ◽  
Author(s):  
Abilash Haridas ◽  
Michele Tagliati ◽  
Irene Osborn ◽  
Ioannis Isaias ◽  
Yakov Gologorsky ◽  
...  

Abstract BACKGROUND: Deep brain stimulation (DBS) at the internal globus pallidus (GPi) has replaced ablative procedures for the treatment of primary generalized dystonia (PGD) because it is adjustable, reversible, and yields robust clinical improvement that appears to be long lasting. OBJECTIVE: To describe the long-term responses to pallidal DBS of a consecutive series of 22 pediatric patients with PGD. METHODS: Retrospective chart review of 22 consecutive PGD patients, ≤21 years of age treated by one DBS team over an 8-year period. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate symptom severity and functional disability, pre- and post-operatively. Adverse events and medication changes were also noted. RESULTS: The median follow-up was 2 years (range, 1-8 years). All 22 patients reached 1-year follow-up; 14 reached 2 years, and 11 reached 3 years. The BFMDRS motor subscores were improved 84%, 93%, and 94% (median) at these time points. These motor responses were matched by equivalent improvements in function, and the response to DBS resulted in significant reductions in oral and intrathecal medication requirements after 12 and 24 months of stimulation. There were no hemorrhages or neurological complications related to surgery and no adverse effects from stimulation. Significant hardware-related complications were noted, in particular, infection (14%), which delayed clinical improvement. CONCLUSION: Pallidal DBS is a safe and effective treatment for PGD in patients <21 years of age. The improvement appears durable. Improvement in device design should reduce hardware-related complications over time.


Sign in / Sign up

Export Citation Format

Share Document