Faculty Opinions recommendation of Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1.

Author(s):  
Anuj Kumar
2014 ◽  
Vol 13 (12) ◽  
pp. 1557-1566 ◽  
Author(s):  
Shen-Huan Liang ◽  
Jen-Hua Cheng ◽  
Fu-Sheng Deng ◽  
Pei-An Tsai ◽  
Ching-Hsuan Lin

ABSTRACTCandida albicansis a commensal in heathy people but has the potential to become an opportunistic pathogen and is responsible for half of all clinical infections in immunocompromised patients. Central to understandingC. albicansbehavior is the white-opaque phenotypic switch, in which cells can undergo an epigenetic transition between the white state and the opaque state. The phenotypic switch regulates multiple properties, including biofilm formation, virulence, mating, and fungus-host interactions. Switching between the white and opaque states is associated with many external stimuli, such as oxidative stress, pH, andN-acetylglucosamine, and is directly regulated by the Wor1 transcriptional circuit. The Hog1 stress-activated protein kinase (SAPK) pathway is recognized as the main pathway for adapting to environmental stress inC. albicans. In this work, we first show that loss of theHOG1gene ina/aand α/α cells, but nota/α cells, results in 100% white-to-opaque switching when cells are grown on synthetic medium, indicating that switching is repressed by thea1/α2 heterodimer that repressesWOR1gene expression. Indeed, switching in thehog1Δ strain was dependent on the presence ofWOR1, as ahog1Δwor1Δ strain did not show switching to the opaque state. Deletion ofPBS2andSSK2also resulted inC. albicanscells switching from white to opaque with 100% efficiency, indicating that the entire Hog1 SAPK pathway is involved in regulating this unique phenotypic transition. Interestingly, all Hog1 pathway mutants also caused defects in shmoo formation and mating efficiencies. Overall, this work reveals a novel role for the Hog1 SAPK pathway in regulating white-opaque switching and sexual behavior inC. albicans.


1997 ◽  
Vol 7 (8) ◽  
pp. 539-546 ◽  
Author(s):  
Ekkehard Leberer ◽  
Karl Ziegelbauer ◽  
Axel Schmidt ◽  
Doreen Harcus ◽  
Daniel Dignard ◽  
...  

2015 ◽  
Vol 59 (6) ◽  
pp. 3460-3468 ◽  
Author(s):  
Rui Li ◽  
Sumant Puri ◽  
Swetha Tati ◽  
Paul J. Cullen ◽  
Mira Edgerton

ABSTRACTCandida albicansis a major etiological organism for oropharyngeal candidiasis (OPC), while salivary histatin 5 (Hst 5) is a human fungicidal protein that protects the oral cavity from OPC.C. albicanssenses its environment by mitogen-activated protein kinase (MAPK) activation that can also modulate the activity of some antifungal drugs, including Hst 5. We found that phosphorylation of the MAPK Cek1, induced either byN-acetylglucosamine (GlcNAc) or serum, or its constitutive activation by deletion of its phosphatase Cpp1 elevated the susceptibility ofC. albicanscells to Hst 5. Cek1 phosphorylation but not hyphal formation was needed for increased Hst 5 sensitivity. Interference with the Cek1 pathway by deletion of its head sensor proteins, Msb2 and Sho1, or by addition of secreted aspartyl protease (SAP) cleavage inhibitors, such as pepstatin A, reduced Hst 5 susceptibility under Cek1-inducing conditions. Changes in fungal cell surface glycostructures also modulated Hst 5 sensitivity, and Cek1-inducing conditions resulted in a higher uptake rate of Hst 5. These results show that there is a consistent relationship between activation of Cek1 MAPK and increased Hst 5 susceptibility inC. albicans.


1998 ◽  
Vol 166 (1) ◽  
pp. 135-139 ◽  
Author(s):  
Faisal A Guhad ◽  
Henrik E Jensen ◽  
B Aalbaek ◽  
Csilla Csank ◽  
Othman Mohamed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document