Faculty Opinions recommendation of Human Pancreatic β Cell lncRNAs Control Cell-Specific Regulatory Networks.

Author(s):  
Anna Gloyn ◽  
Vibe Nylander
2017 ◽  
Vol 25 (2) ◽  
pp. 400-411 ◽  
Author(s):  
Ildem Akerman ◽  
Zhidong Tu ◽  
Anthony Beucher ◽  
Delphine M.Y. Rolando ◽  
Claire Sauty-Colace ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 788-801.e6 ◽  
Author(s):  
Nathan Lawlor ◽  
Eladio J. Márquez ◽  
Peter Orchard ◽  
Narisu Narisu ◽  
Muhammad Saad Shamim ◽  
...  

2016 ◽  
Author(s):  
Ildem Akerman ◽  
Zhidong Tu ◽  
Anthony Beucher ◽  
Delphine M.Y. Rolando ◽  
Claire Sauty-Colace ◽  
...  

SummaryRecent studies have uncovered thousands of long non-coding RNAs (IncRNAs) in human pancreatic β cells. β cell lncRNAs are often cell type-specific, and exhibit dynamic regulation during differentiation or upon changing glucose concentrations. Although these features hint at a role of lncRNAs in β cell gene regulation and diabetes, the function of β cell lncRNAs remains largely unknown. In this study, we investigated the function of β cell-specific lncRNAs and transcription factors using transcript knockdowns and co-expression network analysis. This revealed lncRNAs that function in concert with transcription factors to regulate β cell-specific transcriptional networks. We further demonstrate that lncRNA PLUTO affects local three-dimensional chromatin structure and transcription of PDX1, encoding a key β cell transcription factor, and that both PLUTO and PDX1 are downregulated in islets from donors with type 2 diabetes or impaired glucose tolerance. These results implicate lncRNAs in the regulation of β cell-specific transcription factor networks.


2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


2011 ◽  
pp. 5-10
Author(s):  
Huu Dang Tran

The incretins are peptide hormones secreted from the gut in response to food. They increase the secretion of insulin. The incretin response is reduced in patients with type 2 diabetes so drugs acting on incretins may improve glycaemic control. Incretins are metabolised by dipeptidyl peptidase, so selectively inhibiting this enzyme increases the concentration of circulating incretins. A similar effect results from giving an incretin analogue that cannot be cleaved by dipeptidyl peptidase. Studies have identified other actions including improvement in pancreatic β cell glucose sensitivity and, in animal studies, promotion of pancreatic β cell proliferation and reduction in β cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document