Faculty Opinions recommendation of Single-cell mRNA isoform diversity in the mouse brain.

Author(s):  
Paul Pavlidis
BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Kasper Karlsson ◽  
Sten Linnarsson

2019 ◽  
Vol 116 (3) ◽  
pp. 129a
Author(s):  
Song Jiao ◽  
Cristina Moreno Vadillo ◽  
Miguel Holmgren

2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Szi Kay Leung ◽  
Aaron Jeffries ◽  
Eilis Hannon ◽  
Isabel Castanho ◽  
Karen Moore ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei-Wei Lin ◽  
Lin-Tao Xu ◽  
Yi-Sheng Chen ◽  
Ken Go ◽  
Chenyu Sun ◽  
...  

Background. The critical role of vascular health on brain function has received much attention in recent years. At the single-cell level, studies on the developmental processes of cerebral vascular growth are still relatively few. Techniques for constructing gene regulatory networks (GRNs) based on single-cell transcriptome expression data have made significant progress in recent years. Herein, we constructed a single-cell transcriptional regulatory network of mouse cerebrovascular cells. Methods. The single-cell RNA-seq dataset of mouse brain vessels was downloaded from GEO (GSE98816). This cell clustering was annotated separately using singleR and CellMarker. We then used a modified version of the SCENIC method to construct GRNs. Next, we used a mouse version of SEEK to assess whether genes in the regulon were coexpressed. Finally, regulatory module analysis was performed to complete the cell type relationship quantification. Results. Single-cell RNA-seq data were used to analyze the heterogeneity of mouse cerebrovascular cells, whereby four cell types including endothelial cells, fibroblasts, microglia, and oligodendrocytes were defined. These subpopulations of cells and marker genes together characterize the molecular profile of mouse cerebrovascular cells. Through these signatures, key transcriptional regulators that maintain cell identity were identified. Our findings identified genes like Lmo2, which play an important role in endothelial cells. The same cell type, for instance, fibroblasts, was found to have different regulatory networks, which may influence the functional characteristics of local tissues. Conclusions. In this study, a transcriptional regulatory network based on single-cell analysis was constructed. Additionally, the study identified and profiled mouse cerebrovascular cells using single-cell transcriptome data as well as defined TFs that affect the regulatory network of the mouse brain vasculature.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1865
Author(s):  
Jana Kralovicova ◽  
Ivana Borovska ◽  
Monika Kubickova ◽  
Peter J. Lukavsky ◽  
Igor Vorechovsky

U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.


Sign in / Sign up

Export Citation Format

Share Document