Faculty Opinions recommendation of Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

Author(s):  
Sergei Sokol
2017 ◽  
Vol 41 (5) ◽  
pp. 481-495.e5 ◽  
Author(s):  
Yves Jossin ◽  
Minhui Lee ◽  
Olga Klezovitch ◽  
Elif Kon ◽  
Alexia Cossard ◽  
...  

1983 ◽  
Vol 97 (3) ◽  
pp. 944-948 ◽  
Author(s):  
S I Ogou ◽  
C Yoshida-Noro ◽  
M Takeichi

The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.


1999 ◽  
Vol 144 (2) ◽  
pp. 325-337 ◽  
Author(s):  
Farzad Esni ◽  
Inge-Bert Täljedal ◽  
Anne-Karina Perl ◽  
Harold Cremer ◽  
Gerhard Christofori ◽  
...  

Classical cell dissociation/reaggregation experiments with embryonic tissue and cultured cells have established that cellular cohesiveness, mediated by cell adhesion molecules, is important in determining the organization of cells within tissue and organs. We have employed N-CAM-deficient mice to determine whether N-CAM plays a functional role in the proper segregation of cells during the development of islets of Langerhans. In N-CAM-deficient mice the normal localization of glucagon-producing α cells in the periphery of pancreatic islets is lost, resulting in a more randomized cell distribution. In contrast to the expected reduction of cell–cell adhesion in N-CAM-deficient mice, a significant increase in the clustering of cadherins, F-actin, and cell–cell junctions is observed suggesting enhanced cadherin-mediated adhesion in the absence of proper N-CAM function. These data together with the polarized distribution of islet cell nuclei and Na+/K+-ATPase indicate that islet cell polarity is also affected. Finally, degranulation of β cells suggests that N-CAM is required for normal turnover of insulin-containing secretory granules. Taken together, our results confirm in vivo the hypothesis that a cell adhesion molecule, in this case N-CAM, is required for cell type segregation during organogenesis. Possible mechanisms underlying this phenomenon may include changes in cadherin-mediated adhesion and cell polarity.


Sign in / Sign up

Export Citation Format

Share Document